Surface polaritons, i.e., collective oscillations of the surface charges, strongly influence the optical response at the micro- and nanoscale and have to be accounted for in modern nanotechnology. Within this thesis, certain basic phenomena involving surface polaritons are investigated by means of the semianalytical multiple-multipole (MMP) method. The results are compared to experiments. In the first part, the surface plasmon resonance (SPR) of metal nanoparticles is analyzed. This resonant collective oscillation of the free electrons in a metallic nanoparticle leads to an enhancement and confinement of the local electric field at optical frequencies. The local electric field can be further increased by tailoring the shape of the particle or by using near-field-interacting dimers or trimers of gold nanospheres. The hot spots found under such conditions increase the sensitivity of surface-enhanced Raman scattering by several orders of magnitude and simultaneously reduce the probed volume, thereby providing single-molecule sensitivity. The sub-wavelength-confined strong electromagnetic field associated with a SPR provides the basis for scattering-type near-field optical microscopy or tip-enhanced Raman spectroscopy, where the metal particle serves as a probe that is scanned laterally in the vicinity of a substrate. The presence of the latter causes a characteristic shift of the SPR towards lower frequencies. This effect originates in the near-field interaction of the surface charges on the objects. Furthermore, the excitation of higher-order modes becomes possible in case of an excitation by a strongly inhomogeneous wave, such as an evanescent wave. These modes may significantly contribute to the near field but have only very little influence on the far-field signature. Instead of using resonant probes, one may place a nonresonant probe in the vicinity of a substrate having a high density of electromagnetic surface states. This also produces a resonance of the light scattering by the system. Especially polar crystals, such as the investigated silicon carbide, feature such a high density of surface phonon polariton states in the mid-infrared spectral region, which can be excited due to the near-field interaction with a polarized particle. Thereby, a resonance is created leading to a strong increase of the electric field at the interface. In the second part of the thesis, special emphasis is put on surface plasmon polaritons (SPPs). Such propagating surface waves can be excited directly by plane waves only at patterned interfaces. This process is studied for the case of a groove. The groove breaks the translational invariance, so that the SPPs can be launched locally at the edges of the groove. Additionally, the mode(s) inside the groove are excited. These modes can basically be understood as metal-insulator-metal cavity modes. Their dispersion strongly depends on the groove width. The cavity behavior caused by the finite depth provides another degree of freedom for optimizing the SPP excitation by plane waves. Thin metallic films deposited on glass offer two different SPP waveguide modes, each of which can be addressed preferentially by a proper choice of the width of the groove. The reflection, transmission, scattering, and the conversion of the modes at discontinuities such as edges, steps, barriers, and grooves can be controlled by appropriately designing the geometry at the nanoscale. Furthermore, the excitation of SPPs at single and multiple slits in thin-film metal waveguides on glass and their propagation and scattering is shown by scanning near-field optical experiments. Such waveguide structures offer a means for transporting light in a confined way. Especially triangularly shaped waveguides can be used to guide light in sub-wavelength spaces. / Die Wechselwirkung von elektromagnetischer Strahlung mit subwellenlängenkleinen Teilchen bzw. Oberflächenstrukturen ermöglicht nicht nur eine Miniaturisierung optischer Geräte, sondern erlaubt sehr interessante Anwendungen, beispielsweise in der Sensorik und Nahfeldoptik. In der vorliegenden Arbeit werden die zu Grunde liegenden Effekte im Rahmen der klassischen Elektrodynamik mit Hilfe der semianalytischen Methode der multiplen Multipole (MMP) analysiert, und die Ergebnisse werden mit Experimenten verglichen. Im ersten Teil werden Oberflächenplasmonenresonanzen (engl. surface plasmon resonance - SPR) einzelner und wechselwirkender Metallteilchen untersucht. Die dabei auftretende resonante kollektive Schwingung der freien Elektronen des Partikels bewirkt eine deutliche Erhöhung und Lokalisierung des elektromagnetischen Feldes in seiner Umgebung. Die spektrale Position und die Stärke der SPR eines Nanoteilchens, die von dessen geometrischer Form, Permittivität und Umgebung abhängen, können nur im Grenzfall sehr kleiner Teilchen elektrostatisch beschrieben werden, wohingegen der verwendete semianalytische MMP-Ansatz weitaus flexibler ist und insbesondere auch auf größere Partikel, Teilchen mit komplizierterer Form bzw. Ensembles von Partikeln anwendbar ist. Die betrachteten einzelnen kleinen (< Wellenlänge) Goldkügelchen und Silberellipsoide besitzen eine stark ausgeprägte SPR im sichtbaren optischen Bereich. Diese ist auf eine dipolartige Polarisierung des Teilchens zurückzuführen. Höhere Moden der Polarisation können entweder als Folge von Retardierungseffekten an größeren (mit der Wellenlänge vergleichbaren) Teilchen oder bei der Verwendung inhomogener (z.B. evaneszenter) Wellen angeregt werden. Partikel, die sich in der Nähe eines Substrates befinden, unterliegen der Nahfeldwechselwirkung zwischen den (lichtinduzierten) Oberflächenladungen auf der Oberfläche des Teilchens und des Substrats. Dies führt zu einer Verschiebung der SPR zu niedrigeren Frequenzen und einer Erhöhung des lokalen elektrischen Feldes. Letzteres bildet die Grundlage z.B. der spitzenverstärkten Raman-Spektroskopie und der optischen Nahfeldmikroskopie mit Streulichtdetektion. Dasselbe Prinzip bewirkt ein stark überhöhtes elektrisches Feld zwischen miteinander wechselwirkenden Nanopartikeln, welches z.B. die Sensitivität der oberflächenverstärkten Raman-Mikroskopie um mehrere Größenordnungen steigern kann. Im Gegensatz zur SPR einzelner Nanopartikel kann die Resonanz der Lichtstreuung im Fall eines Partikels in der Nähe eines Substrats aus der durch die Nahfeldwechselwirkung induzierten Anregung elektromagnetischer Oberflächenzustände entstehen. Diese wirken ihrerseits auf das Nanopartikel zurück, wobei eine resonante Lichtstreuung beobachtbar ist. Dieser, am Beispiel einer metallischen Nahfeldsonde über einem Siliziumcarbid-Substrat analysierte, Effekt ermöglicht bei einer ganzen Klasse von polaren Kristallen interessante Anwendungen in der Mikroskopie und Sensorik basierend auf der hohen Dichte von Oberflächenphononpolaritonen dieser Kristalle im mittleren infraroten Spektralbereich und deren nahfeldinduzierten Anregung. Im zweiten Teil der Arbeit werden kollektive Anregungen von Elektronen an Metalloberflächen untersucht. Die dabei auftretenden plasmonischen Oberflächenwellen (engl. surface plasmon polaritons - SPPs) weisen einen exponentiellen Abfall der Intensität senkrecht zur Grenzfläche auf. Diese starke Lokalisierung der Energie an der Oberfläche bildet die Grundlage vieler Anwendungen, z.B. im Bereich der hochempfindlichen Detektion (bio)chemischer Verbindungen oder für eine zweidimensionale Optik (engl. plasmonics). Das Aufheben der Translationsinvarianz längs der Oberfläche ermöglicht die direkte Anregung von SPPs durch ebene Wellen. Die Abhängigkeit dieser Kopplung von der Geometrie wird am Beispiel eines Nanograbens untersucht. Dabei werden neben den SPPs ebenfalls eine oder mehrere Moden im Graben angeregt. Folglich ermöglicht die geeignete Wahl der Grabengeometrie die Optimierung der Umwandlung von ebenen Wellen in SPPs. Im - in der Praxis weit verbreiteten - Fall asymmetrisch eingebetteter metallischer Dünnschichtwellenleiter existieren zwei Moden. In Abhängigkeit von der Grabenbreite kann die eine oder die andere Mode bevorzugt angeregt werden. Die Analyse der Wechselwirkung von SPPs mit Oberflächenstrukturen, z.B. Kanten, Stufen, Barrieren und Gräben, zeigt die Möglichkeit der Steuerung der Reflexions-, Transmissions- und Abstrahleigenschaften durch die gezielte Wahl der Geometrie der "Oberflächendefekte" auf der Nanoskala und deckt die zu Grunde liegenden Mechanismen und die daraus resultierenden Anforderungen bei der Herstellung neuer plasmonischer Komponenten auf. Exemplarisch wird das Prinzip der SPP-Anregung an einzelnen und mehreren Gräben in dünnen metallischen Filmen sowie der subwellenlängen Feldlokalisierung an sich verjüngenden metallischen Dünnschichtwellenleitern unter Verwendung der optischen Nahfeldmikroskopie experimentell gezeigt.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:swb:14-1153478195966-65404 |
Date | 21 July 2006 |
Creators | Renger, Jan |
Contributors | Technische Universität Dresden, Physik, Technische Universität Dresden, Institut für Angewandte Physik/ Photophysik, Prof. Dr. Lukas M. Eng, Prof. Dr. Lukas M. Eng, Prof. Dr. Joachim R. Krenn, Prof. Dr. Lukas Novotny |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0037 seconds