Return to search

Embracing nature's inhomogeneity

Die Untersuchung vergangener Klimavariabilität ist ein einzigartiger Schlüssel zum Verständnis zukünftigen Verhaltens des Erdsystems unter anthropogener Einwirkung. Dies ist von besonderer Wichtigkeit, da es die einzige Realisierung des „Erdsystemexperiments“ ist, die für uns zugänglich ist. Paleoklimaarchive, wie Bäume, Stalagmiten oder Gletscher stellen in ihrer Struktur und Zusammensetzung zeitabhängige Aufzeichungen früherer Klimavariabilität dar. Die statistische Analyse von Zusammenhängen zwischen solchen Zeitreihen kann helfen, die den Paläoklimaproxies zugrundeliegenden Klimaprozesse und, letztlich, der Erdsystemdynamik zu verstehen. Drei Hauptherausforderungen müssen gemeistert werden, um dies möglich zu machen: die Zeitreihen sind unregelmäßig aufgelöst in (i) Zeit, (ii) Raum und die Zeit selbst ist eine Variable die rekonstruiert werden muss, was (iii) zusätzliche Unsicherheiten mit sich bringt. Dazu habe ich den Paläoklimanetzwerkansatz entwickelt, inspiriert von der zunehmenden Anwendung von Methoden aus dem Bereich der komplexen Netzwerke in der Klimatologie. Ich habe Schätzer für Pearson-Korrelation, Transinformation (Mutual Information) und Ereignissynchronisation (Event Synchronization) eingeführt, die keine Zeitreihen mit regelmäßigen Beobachtungsintervallen benötigen. Der Einfluß von Altersunsicherheiten auf Schätzungen solcher Ähnlichkeitsmaße wird numerisch durch Ensembles von möglichen Akkumulationsverläufen abgeschätzt. Ein einfaches Modell für Informationsflüsse im Asiatischen Sommermonsun (ASM) ermöglicht den Test der Fähigkeiten von (Paläoklima-)Netzwerkmaßen, räumlich-zeitliche Klimaänderungen von Zeitreihen räumlich heterogen verteilter Orte zu detektieren. / Investigating past climate changes offers a unique key to understanding the future behavior of the Earth system under anthropogenic perturbation, because it is the only realization of the “Earth system experiment” accessible. Paleoclimate archives such as trees, stalagmites, or glacial deposits provide in their structure and composition time-dependent records of earlier climatic variability. Statistical analysis of dependencies amongst such time series helps to infer on the climatic processes reflected in the paleoclimate proxy data and then, ultimately, on the dynamics of the Earth system. Three inherent technical challenges need to be met: the datasets are heterogeneously sampled in (i) time and (ii) space, and time itself is a variable that needs to be reconstructed which (iii) introduces additional uncertainties. To address these issues I developed the paleoclimate network framework, inspired by the increasing application of complex networks methodology in climate. I introduced estimators for Pearson correlation, mutual information and event synchronization that do not require time series sampled at regular intervals. The impacts of age uncertainty on such similarity estimates was assessed numerically, using ensembles of possible accumulation histories. A simple model for information flow in the Asian summer monsoon (ASM) was used to test the ability of (paleoclimate) network measures to detect spatio-temporal transitions from time series observed at heterogeneous locations in space.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/17473
Date26 September 2013
CreatorsRehfeld, Kira
ContributorsKurths, Jürgen, Lange, Holger, Sokolov, Igor
PublisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I
Source SetsHumboldt University of Berlin
LanguageEnglish
Detected LanguageGerman
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf
RightsNamensnennung - Keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen, http://creativecommons.org/licenses/by-nc-sa/3.0/de/

Page generated in 0.0025 seconds