Les cellules souches neurales quiescentes (CSN) sont le réservoir de la neurogenèse adulte, permettant de produire des nouveaux neurones tout au long de la vie. Cependant, la neurogenèse décroit au cours du vieillissement, provoquant des déclins cognitifs incurables. Afin de mieux comprendre les mécanismes qui contrôlent la prolifération des CSN, nous avons mis en place une méthode de tri par cytométrie en flux qui permet pour la première fois d’isoler les CSN quiescentes et leurs cellules filles dans la ZSV adulte murine. Cette technique nous a permis de prouver que le blocage de la voie GABAAR in vivo provoque l’entrée en cycle des CSN quiescentes. Ainsi, les signaux GABA produits par les neuroblastes dans la ZSV permettent de maintenir les CSN dans leur état de quiescence. Au cours du vieillissement, nous montrons que la production progressive de TGFβ1 par les cellules endothéliales de la niche allonge la phase G1 des CSN activées, diminuant sensiblement la production de nouveaux neurones, sans toutefois diminuer le stock de CSN. Nous mettons ainsi en évidence deux voies majeures contrôlant la prolifération des CSN in vivo, la voie du GABAAR et la voie TGF-β/Smad-3. En vue d’une application thérapeutique, nous prouvons que leur blocage pharmacologique permet de stimuler efficacement la neurogenèse in vivo. / Quiescent neural stem cells (NSCs) are considered the reservoir for adult neurogenesis, generating new neurons throughout life. However, neurogenesis decreases during aging, causing a progressive decline that is currently untreatable. To study the regulatory mechanisms of NSCs proliferation, we set up a new technique allowing the isolation of quiescent NSCs and their progeny. We show that GABAAR directly regulates NSCs quiescence in vivo as the depletion of GABA-producing neuroblasts or GABAAR pathway pharmacological blockade provoked NSCs cell cycle entry in the SVZ. During aging, the stock of NSCs is not perturbed, but we show that an over-production of TGFβ1 by brain endothelial cells directly lengthens activated NSCs G1 phase, strongly decreasing the production of new neurons. These findings highlight GABAAR and TGF-β/Smad-3 as two major pathways controlling NSCs proliferation. In line with a future therapeutic application, we also prove that their blocking stimulates endogenous neurogenesis in vivo.
Identifer | oai:union.ndltd.org:theses.fr/2013PA112204 |
Date | 30 September 2013 |
Creators | Daynac, Mathieu |
Contributors | Paris 11, Mouthon, Marc-André |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image |
Page generated in 0.0025 seconds