On s'intéresse dans cette thèse à l'analyse haute fréquence de l'équation de Helmholtz dans un cadre dissipatif. On commence par chercher des estimations uniformes pour la résolvante de l'opérateur de Schrödinger dissipatif sur le demi-plan supérieur et près d'une énergie vérifiant une hypothèse d'amortissement sur les trajectoires classiques bornées. On généralise pour cela la méthode des commutateurs de Mourre pour des opérateurs dissipatifs. Dans une deuxième partie, on étudie les mesures semi-classiques pour la solution sortante à l'équation lorsque le terme source se concentre sur une sous-variété bornée de l'espace.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00578423 |
Date | 03 December 2010 |
Creators | Royer, Julien |
Publisher | Université de Nantes |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0022 seconds