Spelling suggestions: "subject:"opérateurs autoadjoints"" "subject:"opérateurs autoadjoint""
1 |
Analyse haute fréquence de l'équation de Helmholtz dissipativeRoyer, Julien 03 December 2010 (has links) (PDF)
On s'intéresse dans cette thèse à l'analyse haute fréquence de l'équation de Helmholtz dans un cadre dissipatif. On commence par chercher des estimations uniformes pour la résolvante de l'opérateur de Schrödinger dissipatif sur le demi-plan supérieur et près d'une énergie vérifiant une hypothèse d'amortissement sur les trajectoires classiques bornées. On généralise pour cela la méthode des commutateurs de Mourre pour des opérateurs dissipatifs. Dans une deuxième partie, on étudie les mesures semi-classiques pour la solution sortante à l'équation lorsque le terme source se concentre sur une sous-variété bornée de l'espace.
|
2 |
Spectre et pseudospectre d'opérateurs non-autoadjointsHenry, Raphaël 29 November 2013 (has links) (PDF)
L'instabilité du spectre des opérateurs non-autoadjoints constitue la thématique centrale de cette thèse. Notre premier objectif est de mettre en évidence ce phénomène dans le cas de certains modèles naturels tels que l'opérateur d'Airy, l'oscillateur harmonique ou l'oscillateur cubique complexes. Dans ce but, nous nous intéressons au comportement des projecteurs spectraux associés aux valeurs propres de ces opérateurs, poursuivant une démarche initiée par E. B. Davies. Le second objectif de notre travail consiste à montrer de quelle manière ces modèles peuvent contribuer à la compréhension de certains problèmes issus de domaines mathématiques et physiques aussi variés que la mécanique quantique, la supraconductivité ou la théorie du contrôle. Nos résultats sur l'instabilité spectrale de l'oscillateur cubique complexe viennent ainsi corroborer un travail de B. Krejcirik et P. Siegl, soulignant l'impossibilité de fournir une justification rigoureuse aux théories actuelles de la mécanique quantique non-hermitienne. Par ailleurs, nous nous appuyons sur les propriétés des modèles mentionnés ci-dessus pour obtenir des résultats sur le spectre et la résolvante d'opérateurs de Schrödinger à potentiels imaginaires purs dans des ouverts bornés. Ces résultats peuvent en particulier être appliqués à l'étude du système de Ginzburg-Landau dépendant du temps en supraconductivité. Enfin, nous présentons des résultats sur la contrôlabilité d'équations paraboliques dégénérées qui reposent sur une étude spectrale et pseudospectrale de l'opérateur d'Airy et de l'oscillateur harmonique complexes. Ce dernier travail est le fruit d'une collaboration avec K. Beauchard, B. Helffer et L. Robbiano.
|
3 |
Spectre et pseudospectre d'opérateurs non-autoadjoints / Spectra and pseudospectra of non-selfadjoint operatorsHenry, Raphaël 29 November 2013 (has links)
L'instabilité du spectre des opérateurs non-autoadjoints constitue la thématique centrale de cette thèse. Notre premier objectif est de mettre en évidence ce phénomène dans le cas de certains modèles naturels tels que l'opérateur d'Airy, l'oscillateur harmonique ou l'oscillateur cubique complexes. Dans ce but, nous nous intéressons au comportement des projecteurs spectraux associés aux valeurs propres de ces opérateurs, poursuivant une démarche initiée par E. B. Davies. Le second objectif de notre travail consiste à montrer de quelle manière ces modèles peuvent contribuer à la compréhension de certains problèmes issus de domaines mathématiques et physiques aussi variés que la mécanique quantique, la supraconductivité ou la théorie du contrôle. Nos résultats sur l'instabilité spectrale de l'oscillateur cubique complexe viennent ainsi corroborer un travail de B. Krejcirik et P. Siegl, soulignant l'impossibilité de fournir une justification rigoureuse aux théories actuelles de la mécanique quantique non-hermitienne. Par ailleurs, nous nous appuyons sur les propriétés des modèles mentionnés ci-dessus pour obtenir des résultats sur le spectre et la résolvante d'opérateurs de Schrödinger à potentiels imaginaires purs dans des ouverts bornés. Ces résultats peuvent en particulier être appliqués à l'étude du système de Ginzburg-Landau dépendant du temps en supraconductivité. Enfin, nous présentons des résultats sur la contrôlabilité d'équations paraboliques dégénérées qui reposent sur une étude spectrale et pseudospectrale de l'opérateur d'Airy et de l'oscillateur harmonique complexes. Ce dernier travail est le fruit d'une collaboration avec K. Beauchard, B. Helffer et L. Robbiano. / Spectral instability of non-selfadjoint operators is the main subject of this thesis. Our first goal is to understand the pseudospectral behavior of natural models such as the complex Airy operator, harmonic oscillator and cubic oscillator. To this purpose, we analyze the asymptotic behavior of the spectral projections associated with the eigenvalues of these operators, following a work initiated by E.B. Davies. Our second goal is to illustrate how such models can be used in several problems arising in quantum mechanics, superconductivity or control theory. For instance, our results on the spectral instability of the complex cubic oscillator enable us to confirm that the current theory of non-hermitian quantum mechanics can not be rigorously justified, as recently pointed out by B. Krejcirik and P. Siegl. On the other hand, we obtain spectral information and resolvent estimates for semi-classical Schrödinger operators with purely imaginary potentials in a bounded domain, by using the properties of the models mentioned above. In particuler, these results entail some information on the time-dependent Ginzburg-Landau system in superconductivity. Finally, we reproduce a joint work with K. Beauchard, B. Helffer et L. Robbiano in which the controllability of some degenerate parabolic operators is investigated. An analysis of the spectrum and resolvent of the complex Airy operator and harmonic oscillator yields some controllability and non-controllability results for the equation under consideration.
|
4 |
Quelques problèmes de contrôle d'équations aux dérivées partielles : inégalités spectrales, systèmes couplés et limites singulièresLéautaud, Matthieu 22 June 2011 (has links) (PDF)
Dans cette thèse, on s'intéresse à la contrôlabilité de différentes équations aux dérivées partielles. La première partie est consacrée à la méthode de Lebeau-Robbiano pour le contrôle des équations paraboliques linéaires. On étend tout d'abord cette méthode à des opérateurs elliptiques non-autoadjoints, montrant une inégalité spectrale ainsi que la contrôlabilité de l'équation parabolique associée. On prouve ensuite ces deux propriétés pour un modèle de transmission à travers une interface, pour lequel la condition de transmission implique une diffusion tangentielle. La preuve repose sur une inégalité de Carleman, uniforme par rapport au petit paramètre représentant l'épaisseur de l'interface. Dans la deuxième partie, on analyse les propriétés de certains systèmes d'équations aux dérivées partielles linéaires couplées par des termes d'ordre zéro. Après avoir étudié la stabilisation de deux équations d'ondes, dont une seulement est amortie, on montre la contrôlabilité en temps grand d'un système similaire au moyen d'un seul contrôle, sous des conditions géométriques optimales sur les zones de contrôle et de couplage. Par des méthodes d'analyse microlocale, on obtient de plus la contrôlabilité de systèmes d'ondes en cascade, ainsi que l'expression exacte du temps minimal de contrôle. On déduit de ces résultats la contrôlabilité des systèmes paraboliques associés, dans des situations où les zones de contrôle et de couplage sont disjointes. Enfin, dans la troisième partie, on étudie la contrôlabilité uniforme de perturbations visqueuses de lois de conservation scalaires, dans la limite de viscosité évanescente. On montre la contrôlabilité exacte globale aux états constants au moyen de contrôles uniformément bornés lorsque la viscosité tend vers zéro.
|
Page generated in 0.0536 seconds