The hierarchical (<i>H-</i>) matrix format allows storing a variety of dense matrices from certain applications in a special data-sparse way with linear-polylogarithmic complexity. Many operations from linear algebra like matrix-matrix and matrix-vector products, matrix inversion and LU decomposition can be implemented efficiently using the <i>H</i>-matrix format. Due to its importance in solving many problems in numerical linear algebra like least-squares problems, it is also desirable to have an efficient QR decomposition of <i>H</i>-matrices. In the past, two different approaches for this task have been suggested. We will review the resulting methods and suggest a new algorithm to compute the QR decomposition of an <i>H</i>-matrix. Like other <i>H</i>-arithmetic operations the <i>H</i>QR decomposition is of linear-polylogarithmic complexity. We will compare our new algorithm with the older ones by using two series of test examples and discuss benefits and drawbacks of the new approach.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:19190 |
Date | 28 August 2009 |
Creators | Benner, Peter, Mach, Thomas |
Publisher | Technische Universität Chemnitz |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:preprint, info:eu-repo/semantics/preprint, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds