Return to search

Aspects on Dynamic Power Flow Controllers and Related Devices for Increased Flexibility in Electric Power Systems

This thesis studies different aspects of Flexible AC Transmission System (FACTS) devices which are used to improve the power transfer capability and increase the controllability in electric power systems. In the thesis, different aspects on the usage and control of Dynamic Power Flow Controllers (DPFC) and related FACTS devices are studied. The DPFC is a combination of a Phase Shifting Transformer (PST) and a Thyristor Switched Series Capacitor (TSSC)/Thyristor Switched Series Reactor (TSSR). The thesis proposes and studies a new method, the Ideal Phase-Shifter (IPS) method, for selection and rating of Power Flow Controllers (PFC) in a power grid. The IPS method, which is based on steady-state calculations, is proposed as a first step in the design process for a PFC. The method uses the Power controller plane, introduced by Brochu et al in 1999. The IPS method extends the usage of decoupling methods in the Power controller plane to a power system of arbitrary size. The IPS method was in the thesis used to compare the ratings of different PFC:s required to improve the power transfer capability in two test systems. The studied devices were here the PST, the TSSC/TSSR and the DPFC. The thesis treats control of ideal Controlled Series Capacitors (CSC), TCSC, TSSC/TSSR, and DPFC. The goals of the FACTS controllers which are developed are Power Oscillation Damping (POD), fast power flow control, and transient stability improvement in the power system. New adaptive control strategies for POD and power flow control are proposed and studied in different models of power systems by time-domain simulations. A strategy for transient stability improvement is also proposed and studied. Additionally, different methods for study of Subsynchronous Resonance (SSR), which is associated with series compensation in power systems, are investigated. Here, four of the most common methods for frequency scanning to determine the electrical damping of subsynchronous oscillations in a power grid are studied. The study reveals significant differences of the electrical damping estimates of the studied standard methods when applied to a four-machine test system. / QC 20110819

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-37823
Date January 2011
CreatorsJohansson, Nicklas
PublisherKTH, Elektriska maskiner och effektelektronik, Stockholm : KTH Royal Institute of Technology - KTH, Stockholm, Sweden
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTrita-EE, 1653-5146 ; 2011:050

Page generated in 0.0027 seconds