Le problème du suivi d'objets dans une vidéo se pose dans des domaines tels que la vision par ordinateur (vidéo-surveillance par exemple) et la post-production télévisuelle et cinématographique (effets spéciaux). Il se décline en deux variantes principales : le suivi d'une région d'intérêt, qui désigne un suivi grossier d'objet, et la segmentation spatio-temporelle, qui correspond à un suivi précis des contours de l'objet d'intérêt. Dans les deux cas, la région ou l'objet d'intérêt doivent avoir été préalablement détourés sur la première, et éventuellement la dernière, image de la séquence vidéo. Nous proposons dans cette thèse une méthode pour chacun de ces types de suivi ainsi qu'une implémentation rapide tirant partie du Graphics Processing Unit (GPU) d'une méthode de suivi de régions d'intérêt développée par ailleurs.<br />La première méthode repose sur l'analyse de trajectoires temporelles de points saillants et réalise un suivi de régions d'intérêt. Des points saillants (typiquement des lieux de forte courbure des lignes isointensité) sont détectés dans toutes les images de la séquence. Les trajectoires sont construites en liant les points des images successives dont les voisinages sont cohérents. Notre contribution réside premièrement dans l'analyse des trajectoires sur un groupe d'images, ce qui améliore la qualité d'estimation du mouvement. De plus, nous utilisons une pondération spatio-temporelle pour chaque trajectoire qui permet d'ajouter une contrainte temporelle sur le mouvement tout en prenant en compte les déformations géométriques locales de l'objet ignorées par un modèle de mouvement global.<br />La seconde méthode réalise une segmentation spatio-temporelle. Elle repose sur l'estimation du mouvement du contour de l'objet en s'appuyant sur l'information contenue dans une couronne qui s'étend de part et d'autre de ce contour. Cette couronne nous renseigne sur le contraste entre le fond et l'objet dans un contexte local. C'est là notre première contribution. De plus, la mise en correspondance par une mesure de similarité statistique, à savoir l'entropie du résiduel, d'une portion de la couronne et d'une zone de l'image suivante dans la séquence permet d'améliorer le suivi tout en facilitant le choix de la taille optimale de la couronne.<br />Enfin, nous proposons une implémentation rapide d'une méthode de suivi de régions d'intérêt existante. Cette méthode repose sur l'utilisation d'une mesure de similarité statistique : la divergence de Kullback-Leibler. Cette divergence peut être estimée dans un espace de haute dimension à l'aide de multiples calculs de distances au k-ème plus proche voisin dans cet espace. Ces calculs étant très coûteux, nous proposons une implémentation parallèle sur GPU (grâce à l'interface logiciel CUDA de NVIDIA) de la recherche exhaustive des k plus proches voisins. Nous montrons que cette implémentation permet d'accélérer le suivi des objets, jusqu'à un facteur 15 par rapport à une implémentation de cette recherche nécessitant au préalable une structuration des données.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00374657 |
Date | 11 December 2008 |
Creators | Vincent, Garcia |
Publisher | Université de Nice Sophia-Antipolis |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0024 seconds