• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 5
  • 1
  • Tagged with
  • 14
  • 14
  • 14
  • 14
  • 8
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Méthodes d'apprentissage pour la classification multi label / Learning methods for multi-label classification

Kanj, Sawsan 06 May 2013 (has links)
La classification multi-label est une extension de la classification traditionnelle dans laquelle les classes ne sont pas mutuellement exclusives, chaque individu pouvant appartenir à plusieurs classes simultanément. Ce type de classification est requis par un grand nombre d’applications actuelles telles que la classification d’images et l’annotation de vidéos. Le principal objectif de cette thèse est la proposition de nouvelles méthodes pour répondre au problème de classification multi-label. La première partie de cette thèse s’intéresse au problème d’apprentissage multi-label dans le cadre des fonctions de croyance. Nous développons une méthode capable de tenir compte des corrélations entre les différentes classes et de classer les individus en utilisant le formalisme de représentation de l’incertitude pour les variables multi-valuées. La deuxième partie aborde le problème de l’édition des bases d’apprentissage pour la classification multi-label. Nous proposons un algorithme basé sur l’approche des k-plus proches voisins qui permet de détecter les exemples erronés dans l’ensemble d’apprentissage. Des expérimentations menées sur des jeux de données synthétiques et réelles montrent l’intérêt des approches étudiées. / Multi-label classification is an extension of traditional single-label classification, where classes are not mutually exclusive, and each example can be assigned by several classes simultaneously . It is encountered in various modern applications such as scene classification and video annotation. the main objective of this thesis is the development of new techniques to adress the problem of multi-label classification that achieves promising classification performance. the first part of this manuscript studies the problem of multi-label classification in the context of the theory of belief functions. We propose a multi-label learning method that is able to take into account relationships between labels ant to classify new instances using the formalism of representation of uncertainty for set-valued variables. The second part deals withe the problem of prototype selection in the framework of multi-label learning. We propose an editing algorithm based on the k-nearest neighbor rule in order to purify training dataset and improve the performances of multi-label classification algorithms. Experimental results on synthetic and real-world datasets show the effectiveness of our approaches.
2

SELECTION DE VARIABLES POUR LA DISCRIMINATION EN GRANDE DIMENSION ET CLASSIFICATION DE DONNEES FONCTIONNELLES

Tuleau, Christine 05 December 2005 (has links) (PDF)
Cette thèse s'inscrit dans le cadre de la statistique non paramétrique et porte sur la classification et la discrimination en grande dimension, et plus particulièrement sur la sélection de variables. Une première partie traite de la sélection de variables à travers CART, dans un cadre de régression et de classification binaire. La procédure exhaustive développée s'appuie sur le principe de la sélection de modèle qui permet d'obtenir des inégalités ``oracle'' et de réaliser la sélection de variables par contraste pénalisé. Une seconde partie est motivée par un problème industriel. Il s'agit de déterminer parmi les signaux temporels, mesurés au cours d'essais, ceux capables d'expliquer le ressenti de confort du conducteur, puis d'identifier les pages temporelles responsables de cette pertinence. La démarche adoptée s'articule autour du prétraitement des signaux, de la réduction de la dimension par projection dans une base d'ondelettes commune, et de la sélection de variables en mêlant CART et une stratégie pas à pas. Une dernière partie aborde le thème de la classification de données fonctionnelles au moyen des k-plus proches voisins. La procédure consiste à appliquer les k-plus proches voisins sur les coordonnées de la projection des données dans un espace fini dimensionnel. Cette procédure implique de déterminer simultanément la dimension de l'espace de projection et le nombre de voisins. La version usuelle des k-plus proches voisins et une version légèrement pénalisée sont considérées théoriquement. Un travail sur données réelles et simulées semble montrer qu'un faible terme de pénalité stabilise la sélection en conservant de bonnes performances.
3

Indexation dans les espaces métriques Index arborescent et parallélisation

Kouahla, Zineddine 14 February 2013 (has links) (PDF)
L'indexation et la recherche efficiente de données complexes constitue un besoin croissant face à la taille et à la variété des bases de données actuelles. Nous proposons une structure d'index arborescent basée sur un partitionnement d'un espace métrique à base de boules et d'hyper-plans. Les performances de cet index sont évaluées expérimentalement sur des collections de complexités intrinsèques différentes. La parallélisation de l'algorithme de recherche des k plus proches voisins est également effectuée afin d'encore améliorer les performances.
4

Mesures de similarité statistiques et estimateurs par k plus proches voisins : une association pour gérer des descripteurs de haute dimension en traitement d'images et de vidéos

Debreuve, Eric 08 July 2009 (has links) (PDF)
Mesures de similarité statistiques et estimateurs par k plus proches voisins : une association pour gérer des descripteurs de haute dimension en traitement d'images et de vidéos
5

Mesures de similarité et cosinus généralisé : une approche d'apprentissage supervisé fondée sur les k plus proches voisins

Qamar, Ali Mustafa 19 November 2010 (has links) (PDF)
Les performances des algorithmes d'apprentissage automatique dépendent de la métrique utilisée pour comparer deux objets, et beaucoup de travaux ont montré qu'il était préférable d'apprendre une métrique à partir des données plutôt que se reposer sur une métrique simple fondée sur la matrice identité. Ces résultats ont fourni la base au domaine maintenant qualifié d'apprentissage de métrique. Toutefois, dans ce domaine, la très grande majorité des développements concerne l'apprentissage de distances. Toutefois, dans certaines situations, il est préférable d'utiliser des similarités (par exemple le cosinus) que des distances. Il est donc important, dans ces situations, d'apprendre correctement les métriques à la base des mesures de similarité. Il n'existe pas à notre connaissance de travaux complets sur le sujet, et c'est une des motivations de cette thèse. Dans le cas des systèmes de filtrage d'information où le but est d'affecter un flot de documents à un ou plusieurs thèmes prédéfinis et où peu d'information de supervision est disponible, des seuils peuvent être appris pour améliorer les mesures de similarité standard telles que le cosinus. L'apprentissage de tels seuils représente le premier pas vers un apprentissage complet des mesures de similarité. Nous avons utilisé cette stratégie au cours des campagnes CLEF INFILE 2008 et 2009, en proposant des versions en ligne et batch de nos algorithmes. Cependant, dans le cas où l'on dispose de suffisamment d'information de supervision, comme en catégorisation, il est préférable d'apprendre des métriques complètes, et pas seulement des seuils. Nous avons développé plusieurs algorithmes qui visent à ce but dans le cadre de la catégorisation à base de k plus proches voisins. Nous avons tout d'abord développé un algorithme, SiLA, qui permet d'apprendre des similarités non contraintes (c'est-à-dire que la mesure peut être symétrique ou non). SiLA est une extension du perceptron par vote et permet d'apprendre des similarités qui généralisent le cosinus, ou les coefficients de Dice ou de Jaccard. Nous avons ensuite comparé SiLA avec RELIEF, un algorithme standard de re-pondération d'attributs, dont le but n'est pas sans lien avec l'apprentissage de métrique. En effet, il a récemment été suggéré par Sun et Wu que RELIEF pouvait être considéré comme un algorithme d'apprentissage de métrique avec pour fonction objectif une approximation de la fonction de perte 0-1. Nous montrons ici que cette approximation est relativement mauvaise et peut être avantageusement remplacée par une autre, qui conduit à un algorithme dont les performances sont meilleurs. Nous nous sommes enfin intéressés à une extension directe du cosinus, extension définie comme la forme normalisée d'un produit scalaire dans un espace projeté. Ce travail a donné lieu à l'algorithme gCosLA. Nous avons testé tous nos algorithmes sur plusieurs bases de données. Un test statistique, le s-test, est utilisé pour déterminer si les différences entre résultats sont significatives ou non. gCosLA est l'algorithme qui a fourni les meilleurs résultats. De plus, SiLA et gCosLA se comparent avantageusement à plusieurs algorithmes standard, ce qui illustre leur bien fondé.
6

Processus empiriques, estimation non paramétrique et données censurées.

Viallon, Vivian 01 December 2006 (has links) (PDF)
La théorie des processus empiriques joue un rôle central en statistique, puisqu'elle concerne l'ensemble des résultats limites généraux se rapportant aux échantillons aléatoires. En particulier, des lois uniformes du logarithme ont permis d'aborder de manière systématique la convergence en norme sup des estimateurs à noyau. Dans cette thèse, nous obtenons premièrement des lois fonctionnelles uniformes du logarithme pour les incréments du processus des quantiles normé, qui permettent d'établir des propriétés nouvelles des estimateurs basés sur les k-plus proches voisins. Le même type de résultat est ensuite obtenu pour les incréments du processus empirique de Kaplan-Meier, conduisant naturellement à des lois du logarithme uniformes pour des estimateurs de la densité et du taux de mortalité en présence de censure à droite. Dans le cas de la régression multivariée, des lois analogues sont obtenues pour des estimateurs à noyau, notamment dans le cas censuré. Enfin, nous développons un estimateur non paramétrique de la régression sous l'hypothèse du modèle additif dans le cas de censure à droite, permettant de se défaire du fléau de la dimension. Cet estimateur repose essentiellement sur la méthode d'intégration marginale.
7

Scaling out-of-core k-nearest neighbors computation on single machines / Faire passer à l'échelle le calcul "out-of-core" des K-plus proche voisins sur une seule machine

Olivares, Javier 19 December 2016 (has links)
La technique des K-plus proches voisins (K-Nearest Neighbors (KNN) en Anglais) est une méthode efficace pour trouver des données similaires au sein d'un grand ensemble de données. Au fil des années, un grand nombre d'applications ont utilisé les capacités du KNN pour découvrir des similitudes dans des jeux de données de divers domaines tels que les affaires, la médecine, la musique, ou l'informatique. Bien que des années de recherche aient apporté plusieurs approches de cet algorithme, sa mise en œuvre reste un défi, en particulier aujourd'hui alors que les quantités de données croissent à des vitesses inimaginables. Dans ce contexte, l'exécution du KNN sur de grands ensembles pose deux problèmes majeurs: d'énormes empreintes mémoire et de très longs temps d'exécution. En raison de ces coût élevés en termes de ressources de calcul et de temps, les travaux de l'état de l'art ne considèrent pas le fait que les données peuvent changer au fil du temps, et supposent toujours que les données restent statiques tout au long du calcul, ce qui n'est malheureusement pas du tout conforme à la réalité. Nos contributions dans cette thèse répondent à ces défis. Tout d'abord, nous proposons une approche out-of-core pour calculer les KNN sur de grands ensembles de données en utilisant un seul ordinateur. Nous préconisons cette approche comme un moyen moins coûteux pour faire passer à l'échelle le calcul des KNN par rapport au coût élevé d'un algorithme distribué, tant en termes de ressources de calcul que de temps de développement, de débogage et de déploiement. Deuxièmement, nous proposons une approche out-of-core multithreadée (i.e. utilisant plusieurs fils d'exécution) pour faire face aux défis du calcul des KNN sur des données qui changent rapidement et continuellement au cours du temps. Après une évaluation approfondie, nous constatons que nos principales contributions font face aux défis du calcul des KNN sur de grands ensembles de données, en tirant parti des ressources limitées d'une machine unique, en diminuant les temps d'exécution par rapport aux performances actuelles, et en permettant le passage à l'échelle du calcul, à la fois sur des données statiques et des données dynamiques. / The K-Nearest Neighbors (KNN) is an efficient method to find similar data among a large set of it. Over the years, a huge number of applications have used KNN's capabilities to discover similarities within the data generated in diverse areas such as business, medicine, music, and computer science. Despite years of research have brought several approaches of this algorithm, its implementation still remains a challenge, particularly today where the data is growing at unthinkable rates. In this context, running KNN on large datasets brings two major issues: huge memory footprints and very long runtimes. Because of these high costs in terms of computational resources and time, KNN state-of the-art works do not consider the fact that data can change over time, assuming always that the data remains static throughout the computation, which unfortunately does not conform to reality at all. In this thesis, we address these challenges in our contributions. Firstly, we propose an out-of-core approach to compute KNN on large datasets, using a commodity single PC. We advocate this approach as an inexpensive way to scale the KNN computation compared to the high cost of a distributed algorithm, both in terms of computational resources as well as coding, debugging and deployment effort. Secondly, we propose a multithreading out-of-core approach to face the challenges of computing KNN on data that changes rapidly and continuously over time. After a thorough evaluation, we observe that our main contributions address the challenges of computing the KNN on large datasets, leveraging the restricted resources of a single machine, decreasing runtimes compared to that of the baselines, and scaling the computation both on static and dynamic datasets.
8

Modèles à noyaux à structure locale

Vincent, Pascal January 2003 (has links)
No description available.
9

Découverte d'évènements par contenu visuel dans les médias sociaux / Visual-based event mining in social media

Trad, Riadh 05 June 2013 (has links)
L’évolution du web, de ce qui était typiquement connu comme un moyen de communication à sens unique en mode conversationnel, a radicalement changé notre manière de traiter l’information. Des sites de médias sociaux tels que Flickr et Facebook, offrent des espaces d’échange et de diffusion de l’information. Une information de plus en plus riche, mais aussi personnelle, et qui s’organise, le plus souvent, autour d’événements de la vie réelle. Ainsi, un événement peut être perçu comme un ensemble de vues personnelles et locales, capturées par différents utilisateurs. Identifier ces différentes instances permettrait, dès lors, de reconstituer une vue globale de l’événement. Plus particulièrement, lier différentes instances d’un même événement profiterait à bon nombre d’applications tel que la recherche, la navigation ou encore le filtrage et la suggestion de contenus. L’objectif principal de cette thèse est l’identification du contenu multimédia, associé à un événement dans de grandes collections d’images. Une première contribution est une méthode de recherche d’événements basée sur le contenu visuel. La deuxième contribution est une approche scalable et distribuée pour la construction de graphes des K plus proches voisins. La troisième contribution est une méthode collaborative pour la sélection de contenu pertinent. Plus particulièrement, nous nous intéresserons aux problèmes de génération automatique de résumés d’événements et suggestion de contenus dans les médias sociaux. / The ease of publishing content on social media sites brings to the Web an ever increasing amount of user generated content captured during, and associated with, real life events. Social media documents shared by users often reflect their personal experience of the event. Hence, an event can be seen as a set of personal and local views, recorded by different users. These event records are likely to exhibit similar facets of the event but also specific aspects. By linking different records of the same event occurrence we can enable rich search and browsing of social media events content. Specifically, linking all the occurrences of the same event would provide a general overview of the event. In this dissertation we present a content-based approach for leveraging the wealth of social media documents available on the Web for event identification and characterization. To match event occurrences in social media, we develop a new visual-based method for retrieving events in huge photocollections, typically in the context of User Generated Content. The main contributions of the thesis are the following : (1) a new visual-based method for retrieving events in photo collections, (2) a scalable and distributed framework for Nearest Neighbors Graph construction for high dimensional data, (3) a collaborative content-based filtering technique for selecting relevant social media documents for a given event.
10

Data, learning and privacy in recommendation systems / Données, apprentissage et respect de la vie privée dans les systèmes de recommandation

Mittal, Nupur 25 November 2016 (has links)
Les systèmes de recommandation sont devenus une partie indispensable des services et des applications d’internet, en particulier dû à la surcharge de données provenant de nombreuses sources. Quel que soit le type, chaque système de recommandation a des défis fondamentaux à traiter. Dans ce travail, nous identifions trois défis communs, rencontrés par tous les types de systèmes de recommandation: les données, les modèles d'apprentissage et la protection de la vie privée. Nous élaborons différents problèmes qui peuvent être créés par des données inappropriées en mettant l'accent sur sa qualité et sa quantité. De plus, nous mettons en évidence l'importance des réseaux sociaux dans la mise à disposition publique de systèmes de recommandation contenant des données sur ses utilisateurs, afin d'améliorer la qualité des recommandations. Nous fournissons également les capacités d'inférence de données publiques liées à des données relatives aux utilisateurs. Dans notre travail, nous exploitons cette capacité à améliorer la qualité des recommandations, mais nous soutenons également qu'il en résulte des menaces d'atteinte à la vie privée des utilisateurs sur la base de leurs informations. Pour notre second défi, nous proposons une nouvelle version de la méthode des k plus proches voisins (knn, de l'anglais k-nearest neighbors), qui est une des méthodes d'apprentissage parmi les plus populaires pour les systèmes de recommandation. Notre solution, conçue pour exploiter la nature bipartie des ensembles de données utilisateur-élément, est évolutive, rapide et efficace pour la construction d'un graphe knn et tire sa motivation de la grande quantité de ressources utilisées par des calculs de similarité dans les calculs de knn. Notre algorithme KIFF utilise des expériences sur des jeux de données réelles provenant de divers domaines, pour démontrer sa rapidité et son efficacité lorsqu'il est comparé à des approches issues de l'état de l'art. Pour notre dernière contribution, nous fournissons un mécanisme permettant aux utilisateurs de dissimuler leur opinion sur des réseaux sociaux sans pour autant dissimuler leur identité. / Recommendation systems have gained tremendous popularity, both in academia and industry. They have evolved into many different varieties depending mostly on the techniques and ideas used in their implementation. This categorization also marks the boundary of their application domain. Regardless of the types of recommendation systems, they are complex and multi-disciplinary in nature, involving subjects like information retrieval, data cleansing and preprocessing, data mining etc. In our work, we identify three different challenges (among many possible) involved in the process of making recommendations and provide their solutions. We elaborate the challenges involved in obtaining user-demographic data, and processing it, to render it useful for making recommendations. The focus here is to make use of Online Social Networks to access publicly available user data, to help the recommendation systems. Using user-demographic data for the purpose of improving the personalized recommendations, has many other advantages, like dealing with the famous cold-start problem. It is also one of the founding pillars of hybrid recommendation systems. With the help of this work, we underline the importance of user’s publicly available information like tweets, posts, votes etc. to infer more private details about her. As the second challenge, we aim at improving the learning process of recommendation systems. Our goal is to provide a k-nearest neighbor method that deals with very large amount of datasets, surpassing billions of users. We propose a generic, fast and scalable k-NN graph construction algorithm that improves significantly the performance as compared to the state-of-the art approaches. Our idea is based on leveraging the bipartite nature of the underlying dataset, and use a preprocessing phase to reduce the number of similarity computations in later iterations. As a result, we gain a speed-up of 14 compared to other significant approaches from literature. Finally, we also consider the issue of privacy. Instead of directly viewing it under trivial recommendation systems, we analyze it on Online Social Networks. First, we reason how OSNs can be seen as a form of recommendation systems and how information dissemination is similar to broadcasting opinion/reviews in trivial recommendation systems. Following this parallelism, we identify privacy threat in information diffusion in OSNs and provide a privacy preserving algorithm for the same. Our algorithm Riposte quantifies the privacy in terms of differential privacy and with the help of experimental datasets, we demonstrate how Riposte maintains the desirable information diffusion properties of a network.

Page generated in 0.1325 seconds