Le travail a porté sur le développement d'une méthode de décomposition de domaine pour le calcul de structures électroniques avec les modèles de Hartree-Fock ou DFT (Density Functional Theory). La simulation de ces modèles passe traditionnellement par la résolution d'un problème aux valeurs propres généralisé, dont la complexité cubique est un verrou pour pouvoir traiter un grand nombre d'atomes. La méthode MDD (Multilevel Domain Decomposition), introduite au cours de la thèse de Maxime Barrault (2005), est une alternative à cette étape bloquante. Elle consiste à se ramener à un problème de minimisation sous contraintes où on peut exploiter les propriétés de localisation de la solution. Les résultats acquis au cours de la présente thèse sont :* l'analyse numérique de la méthode : on a montré, sur un problème simplifié présentant les mêmes difficultés mathématiques, un résultat de convergence locale de l'algorithme ; * l'augmentation de la vitesse de calcul et de la précision, pour les répartitions "1D" des sous-domaines, ainsi que la démonstration de la scalabilité jusqu'à $1000$ processeurs; * l'extension de l'algorithme et de l'implémentation aux cas où les sous-domaines sont répartis en "2D/3D".
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00391801 |
Date | 18 December 2008 |
Creators | Bencteux, Guy |
Publisher | Ecole des Ponts ParisTech |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds