Return to search

Ocular rigidity : a previously unexplored risk factor in the pathophysiology of open-angle glaucoma : assessment using a novel OCT-based measurement method

Le glaucome est la première cause de cécité irréversible dans le monde. Bien que sa pathogenèse
demeure encore nébuleuse, les propriétés biomécaniques de l’oeil sembleraient jouer un rôle
important dans le développement et la progression de cette maladie. Il est stipulé que la rigidité
oculaire (RO) est altérée au travers les divers stades de la maladie et qu’elle serait le facteur le
plus influent sur la réponse du nerf optique aux variations de la pression intraoculaire (PIO) au
sein du glaucome. Pour permettre l’investigation du rôle de la RO dans le glaucome primaire à
angle ouvert (GPAO), la capacité de quantifier la RO in vivo par l’entremise d’une méthode fiable
et non-invasive est essentielle. Une telle méthode n’est disponible que depuis 2015. Basée sur
l'équation de Friedenwald, cette approche combine l'imagerie par tomographie par cohérence
optique (TCO) et la segmentation choroïdienne automatisée afin de mesurer le changement de
volume choroïdien pulsatile (ΔV), ainsi que la tonométrie dynamique de contour Pascal pour
mesurer le changement de pression pulsatile correspondant.
L’objectif de cette thèse est d’évaluer la validité de cette méthode, et d’en faire usage afin
d’investiguer le rôle de la RO dans les maladies oculaires, particulièrement le GPAO. Plus
spécifiquement, cette thèse vise à : 1) améliorer la méthode proposée et évaluer sa validité ainsi
que sa répétabilité, 2) investiguer l’association entre la RO et le dommage neuro-rétinien chez les
patients glaucomateux, et ceux atteints d’un syndrome de vasospasticité, 3) évaluer l’association
entre la RO et les paramètres biomécaniques de la cornée, 4) évaluer l’association entre la RO et
les pics de PIO survenant suite aux thérapies par injections intravitréennes (IIV), afin de les prédire
et de les prévenir chez les patients à haut risque, et 5) confirmer que la RO est réduite dans les
yeux myopes.
D’abord, nous avons amélioré le modèle mathématique de l’oeil utilisé pour dériver ΔV en le
rendant plus précis anatomiquement et en tenant compte de la choroïde périphérique. Nous
avons démontré la validité et la bonne répétabilité de cette méthodologie. Puis, nous avons
effectué la mesure des coefficients de RO sur un large éventail de sujets sains et glaucomateux
en utilisant notre méthode non-invasive, et avons démontré, pour la première fois, qu'une RO basse est corrélée aux dommages glaucomateux. Les corrélations observées étaient comparables
à celles obtenues avec des facteurs de risque reconnus tels que la PIO maximale. Une forte
corrélation entre la RO et les dommages neuro-rétiniens a été observée chez les patients
vasospastiques, mais pas chez ceux atteints d'une maladie vasculaire ischémique. Cela pourrait
potentiellement indiquer une plus grande susceptibilité au glaucome due à la biomécanique
oculaire chez les patients vasospastiques. Bien que les paramètres biomécaniques cornéens aient
été largement adoptés dans la pratique clinique en tant que substitut pour la RO, propriété
biomécanique globale de l'oeil, nous avons démontré une association limitée entre la RO et ces
paramètres, offrant une nouvelle perspective sur la relation entre les propriétés biomécaniques
cornéennes et globales de l’oeil. Seule une faible corrélation entre le facteur de résistance
cornéenne et la RO demeure après ajustement pour les facteurs de confusion dans le groupe des
patients glaucomateux. Ensuite, nous avons présenté un modèle pour prédire l'amplitude des pics
de PIO après IIV à partir de la mesure non-invasive de la RO. Ceci est particulièrement utile pour
les patients à haut risque atteints de maladies rétiniennes exsudatives et de glaucome qui
nécessiteraient des IIV thérapeutiques, et pourrait permettre aux cliniciens d'ajuster ou de
personnaliser le traitement pour éviter toute perte de vision additionnelle. Enfin, nous avons
étudié les différences de RO entre les yeux myopes et les non-myopes en utilisant cette
technique, et avons démontré une RO inférieure dans la myopie axiale, facteur de risque du
GPAO. Dans l'ensemble, ces résultats contribuent à l’avancement des connaissances sur la
physiopathologie du GPAO. Le développement de notre méthode permettra non seulement de
mieux explorer le rôle de la RO dans les maladies oculaires, mais contribuera également à élucider
les mécanismes et développer de nouveaux traitements ciblant la RO pour contrer la déficience
visuelle liée à ces maladies. / Glaucoma is the leading cause of irreversible blindness worldwide. While its pathogenesis is yet
to be fully understood, the biomechanical properties of the eye are thought to be involved in the
development and progression of this disease. Ocular rigidity (OR) is thought to be altered through
disease processes and has been suggested to be the most influential factor on the optic nerve
head’s response to variations in intraocular pressure (IOP) in glaucoma. To further investigate the
role of OR in open-angle glaucoma (OAG) and other ocular diseases such as myopia, the ability to
quantify OR in living human eyes using a reliable and non-invasive method is essential. Such a
method has only become available in 2015. Based on the Friedenwald equation, the method uses
time-lapse optical coherence tomography (OCT) imaging and automated choroidal segmentation
to measure the pulsatile choroidal volume change (ΔV), and Pascal dynamic contour tonometry
to measure the corresponding pulsatile pressure change.
The purpose of this thesis work was to assess the validity of the methodology, then use it to
investigate the role of OR in ocular diseases, particularly in OAG. More specifically, the objectives
were: 1) To improve the extrapolation of ΔV and evaluate the method’s validity and repeatability,
2) To investigate the association between OR and neuro-retinal damage in glaucomatous
patients, as well as those with concomitant vasospasticity, 3) To evaluate the association between
OR and corneal biomechanical parameters, 4) To assess the association between OR and IOP
spikes following therapeutic intravitreal injections (IVIs), to predict and prevent them in high-risk
patients, and 5) To confirm that OR is lower in myopia.
First, we improved the mathematical model of the eye used to derive ΔV by rendering it more
anatomically accurate and accounting for the peripheral choroid. We also confirmed the validity
and good repeatability of the method. We carried out the measurement of OR coefficients on a
wide range of healthy and glaucomatous subjects using this non-invasive method, and were able
to show, for the first time, that lower OR is correlated with more glaucomatous damage. The
correlations observed were comparable to those obtained with recognized risk factors such as
maximum IOP. A strong correlation between OR and neuro-retinal damage was found in patients with concurrent vasospastic syndrome, but not in those with ischemic vascular disease. This could
perhaps indicate a greater susceptibility to glaucoma due to ocular biomechanics in vasospastic
patients. While corneal biomechanical parameters have been widely adopted in clinical practice
as surrogate measurements for the eye’s overall biomechanical properties represented by OR,
we have shown a limited association between these parameters, bringing new insight unto the
relationship between corneal and global biomechanical properties. Only a weak correlation
between the corneal resistance factor and OR remained in glaucomatous eyes after adjusting for
confounding factors. In addition, we presented a model to predict the magnitude of IOP spikes
following IVIs from the non-invasive measurement of OR. This is particularly useful for high-risk
patients with exudative retinal diseases and glaucoma that require therapeutic IVIs, and could
provide the clinician an opportunity to adjust or customize treatment to prevent further vision
loss. Finally, we investigated OR differences between non-myopic and myopic eyes using this
technique, and demonstrated lower OR in axial myopia, a risk factor for OAG. Overall, these
findings provide new insights unto the pathophysiology of glaucomatous optic neuropathy. The
development of our method will permit further investigation of the role of OR in ocular diseases,
contributing to elucidate mechanisms and provide novel management options to counter vision
impairment caused by these diseases.

Identiferoai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/24253
Date02 1900
CreatorsSayah, Diane Noël
ContributorsLesk, Mark Richard, Costantino, Santiago
Source SetsUniversité de Montréal
LanguageEnglish
Detected LanguageFrench
Typethesis, thèse

Page generated in 0.0085 seconds