<p>In this Master's thesis, a direct-conversion receiver front-end has been designed in a 0.18um CMOS technology. </p><p>Direct-conversion receivers (DCR) have obvious advantages over the heterodyne counterpart. Since the intermediate frequency (IF) is zero, the problem of image is circumvented. As a result, no front-end image reject filter is required and the channel selection requires only a low-pass filter, which makes it easy to integrate directly on chip. However, the DCR also suffers from several drawbacks such as extreme sensitivity to DC offsets, 1/f noise, local oscillator (LO) leakage/radiation, front-end nonlinearity and I/Q mismatch. This implies very high demands on the DCR front-end. </p><p>The front-end comprises a low-noise amplifier (LNA) and a mixer. Different LNA and mixer architectures has been studied and from the mentioned inherited problems with direct conversion, one proposal for a solution is a differential source degenerated LNA and a differential harmonic mixer, which has been designed and simulated. </p><p>The LNA has a gain of 12dB, a noise figure of 3.6dB and provides a return loss better than -15dB. The overall noise figure of the signal path is 8dB and the overall IIP3 and IIP2 is -12dBm and 31dBm, respectively.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:liu-1197 |
Date | January 2002 |
Creators | Erixon, Mats |
Publisher | Linköping University, Department of Science and Technology, Institutionen för teknik och naturvetenskap |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | English |
Type | Student thesis, text |
Page generated in 0.0019 seconds