Les verres métalliques ont commencé à être produit dans les années 1960 et sous forme massive dans les années 1980. De nombreuses études se sont intéressées à ces matériaux sous leur forme amorphe et ont conclu qu’ils avaient une forte résistance mécanique mais présentaient un comportement très fragile. Dans le cadre du projet EDDAM débuté en 2011, ces matériaux ont été introduits sous forme de petites sphères dans une matrice d’aluminium. Le premier objectif de notre étude est de voir si le verre métallique sous cette forme permet de le rendre peu fragile. Le second objectif est de trouver une alternative aux renforts céramique dans les composites à matrice métallique qui présentent une faible cohésion à l’interface matrice/inclusion. Dans le but de caractériser l’endommagement dans des nouveaux composites amorphe-cristallins métalliques, la tomographie aux rayons X a été utilisée. Cette technique permet de caractériser de manière non destructive l’endommagement des matériaux et de le visualiser en 3D. Cela apporte une contribution à l’étude des matériaux composites par rapport aux techniques classiques utilisées. L’objectif général de cette thèse a été d’étudier l’endommagement en termes d’amorçage, de croissance et de coales- cence des matériaux composites amorphe-cristallins métallique par tomographie aux rayons X lors d’essais de traction monotone in situ. Les matériaux sélectionnés sont constitués d’une matrice aluminium ("molle" de type 1070A ou "dure" de type 5083) et de renforts en verre métallique Zr57Cu20Al10Ni8Ti5 de taille peu dispersée et répartis de manière homogène, avec différentes fractions volumiques (1%, 4% et 10%). Les matériaux composites ont été élaborés par la voie de la métallurgie des poudres au Spark Plasma Sintering (SPS) suivi d’une étape d’extrusion à chaud. Une attention particulière a été portée sur la caractérisation microstructurale des constituants de base. L’analyse qualitative a permis de comparer l’ensemble des composites fabriqués au SPS et ceux extrudés à chaud après SPS. Les différents modes d’amorçage de l’endommagement ont été observés ainsi que la croissance et la coa- lescence amenant la rupture des composites. L’analyse quantitative a été essentiellement consacrée au premier stade de l’endommagement. La croissance et la coalescence étant très rapide, il a été difficile de les suivre lors des essais interrompus. La modélisation d’un composite amorphe-cristallin métallique à matrice molle a été introduite dans le but de reproduire l’endommagement observé lors des analyses expérimentales. Cette première approche nécessite d’être approfondie dans le but de prédire, compte tenu des propriétés mécaniques des différentes phases et de la fraction volumique des renforts, le mode d’endommagement préférentiel apparaissant dans les composites étudiés. Elle montre cependant les prémices d’une modélisation innovante basée sur la microstructure expérimentale. / Metallic glasses have been produced in the 1960s and bulk metallic glasses in the 1980s. Many studies, focused on these materials in their amorphous state, concluded that they had high mechanical strength but shown low ductility. As part of EDDAM project that started in 2011, these materials were introduced as small particles in an aluminum matrix. The first objective of this study is to see if the metallic glass is less brittle in this form. The second objective is to find an alternative of ceramic reinforcements in metal matrix composites. These materials have low cohesion at the matrix/inclusion interface. In order to characterize the damage in new amorphous-crystalline composite, X-ray tomography was used. This allows to characterize damage in materials and to obtain a 3D viewing. The main objective of this thesis was to study damage (nucleation, growth and coalescence) in composite materials using X-ray tomography during tensile tests. Selected materials are constituted of an aluminum matrix and small metallic glass reinforcements (Zr57Cu20Al_10Ni8Ti5). Composites with different volume fractions (from 1vol.% to 10vol.%) were prepared by Spark Plasma Sintering (SPS) and hot extrusion. A particular attention was paid to the microstructural characterization of the basic constituents. Qualitative analysis was used to compare SPS composites with SPS plus hot extrusion composites. Damage nucleation, growth and coalescence were observed. Quantitative analysis was mainly devoted to the first damage step. Growth and coalescence were difficult to follow due to fast rupture and interrupted tensile tests. The modeling of an amorphous-crystalline composite has been introduced in order to reproduce experimental damage analyses. The first approach requires further investigation to predict damage with different volume fractions. However, this part shows the beginning of an innovative model based on the experimental microstructure.
Identifer | oai:union.ndltd.org:theses.fr/2015ISAL0038 |
Date | 06 May 2015 |
Creators | Ferré, Antoine |
Contributors | Lyon, INSA, Dancette, Sylvain, Maire, Eric |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0028 seconds