Return to search

Méthodes particulaires avec remaillage : analyse numérique nouveaux schémas et applications pour la simulation d'équations de transport

Les méthodes particulaires sont des méthodes numériques adaptées à la résolution d'équations de conservation. Leur principe consiste à introduire des particules ''numériques'' conservant localement l'inconnue sur un petit volume, puis à les transporter le long de leur trajectoire. Lorsqu'un terme source est présent dans les équations, l'évolution de la solution le long des caractéristiques est prise en compte par une intéraction entre les particules. Ces méthodes possèdent de bonnes propriétés de conservation et ne sont pas soumises aux conditions habituelles de CFL qui peuvent être contraignantes pour les méthodes Eulériennes. Cependant, une contrainte de recouvrement entre les particules doit être satisfaite pour vérifier des propriétés de convergence de la méthode. Pour satisfaire cette condition de recouvrement, un remaillage périodique des particules est souvent utilisé. Elle consiste à recréer régulièrement de nouvelles particules uniformément réparties, à partir de celles ayant été advectées à l'itération précédente. Quand cette étape de remaillage est effectuée à chaque pas de temps, l'analyse numérique de ces méthodes particulaires remaillées nécessite d'être reconsidérée, ce qui représente l'objectif de ces travaux de thèse. Pour mener à bien cette analyse, nous nous basons sur une analogie entre méthodes particulaires avec remaillage et schémas de grille. Nous montrons que pour des grands pas de temps les schémas numériques obtenus souffrent d'une perte de précision. Nous proposons des méthodes de correction, assurant la consistance des schémas en tout point de grille, le pas de temps étant contraint par une condition sur le gradient du champ de vitesse. Cette méthode est construite en dimension un. Des techniques de limitation sont aussi introduites de manière à remailler les particules sans créer d'oscillations en présence de fortes variations de la solution. Enfin, ces méthodes sont généralisées aux dimensions plus grandes que un en s'inspirant du principe de splitting d'opérateurs. Les applications numériques présentées dans cette thèse concernent la résolution de l'équation de transport sous forme conservative en dimension un à trois, dans des régimes linéaires ou non-linéaires.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00623128
Date12 July 2011
CreatorsMagni, Adrien
PublisherUniversité de Grenoble
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0019 seconds