Return to search

Optische Synchronisation am CW-Beschleuniger ELBE

Moderne Experimente in der Kurzzeitphysik erfordern eine hochpräzise Synchronisation der beteiligten Strahlungsquellen, um dynamische Prozesse und atomare Strukturen aufzulösen. Die Komplexität und räumliche Ausdehnung einer linearbeschleuniger-getriebenen Strahlungsquelle wie ELBE verlangt nach neuen Konzepten, um die anspruchsvollen Anforderungen zu erfüllen. Kernbestandteile der vorliegenden Arbeit sind die Konzeption, der Aufbau und die Inbetriebnahme eines gepulsten optischen Synchronisationssystems zur Verteilung eines Phasenreferenzsignals.

Dieses System bildet eine wesentliche Grundvoraussetzung für wissenschaftliche Experimente mit einer Auflösung im Bereich von wenigen zehn Femtosekunden. Darüber hinaus wurde der Prototyp eines Ankunftszeitmonitors am ELBE-Beschleuniger entwickelt und charakterisiert. Mit diesem Diagnoseelement wurden erstmals Messungen der Elektronenpulsankunftszeit mit einer Auflösung von wenigen Femtosekunden am ELBE-Strahl möglich. Die implementierte Datenanalyse erlaubt einzelpulsaufgelöste Messzyklen mit bisher unerreichter spektraler Bandbreite am kontinuierlichen (CW) Elektronenstrahl. Ferner wurde eine Methode zur Datenerfassung entwickelt, die unter Verwendung der Lockin-Technik besonders rauscharme Messungen hervorbringen kann.

Abschließend wurde der ELBE-Beschleuniger hinsichtlich Ankunftszeit und Energiestabilität umfassend untersucht. Dabei wurden die erweiterten Möglichkeiten, die ELBE als CW-Beschleuniger bietet, ausgeschöpft. Der Fokus lag besonders auf der spektralen Analyse der Störungen bei verschiedenen Kompressionszuständen der Elektronenpulse. Diese methodische Untersuchung wurde sowohl für den thermionischen Injektor als auch für die supraleitende Fotoelektronenquelle durchgeführt.

Die präsentierten Messergebnisse ermöglichen ein erweitertes Verständnis für die wirkenden Störmechanismen während der Elektronenpulspropagation und stellen den Ausgangspunkt für systematische Verbesserungen der Strahlqualität dar. Ein beschriebener Grundlagenversuch belegt, wie der ELBE-Elektronenstrahl in Zukunft aktiv stabilisiert werden kann, um die erforderliche Zeitauflösung zu erreichen. Intrinsische Strahlinstabilitäten können dadurch signifikant reduziert werden.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-175133
Date29 July 2015
CreatorsKuntzsch, Michael
ContributorsTechnische Universität Dresden, Fakultät Mathematik und Naturwissenschaften, Prof. Dr. Thomas Cowan, Prof. Dr. Thomas Cowan, Prof. Dr.-Ing. habil. Wilfried Klix, Dr. Holger Schlarb
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
Languagedeu
Detected LanguageGerman
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0027 seconds