Return to search

Influence of climate change on lake ecosystems - disentangling physical, chemical and biological interactions

Climate change affects lake ecosystems in many ways by direct and indirect temperature impacts on hydrophysical structure, hydrology, chemical cycles and on biological interactions. The identification of these climate signals can be complicated and superimposed by other environmental changes, such as land use changes. The aim of this thesis was to seperate temperature effects from effects of management and other environmental influences and to understand the underlying complex processes causing significant changes of ecosystem states. This understanding is important for decisions of lake and reservoir managers to counteract unfavorable consequences of climate change.

For the recent study, long-term data of meteorological, hydrophysical and biological variables (phytoplankton, crustacean zooplankton, fish) of the German drinking water reservoir Saidenbach were analysed. Based on this long-term data set, strong indicators for climate induced changes have been identified. In particular, increasing water temperatures since 1975, earlier break up of ice covers and an altered hydrophysical structure could be detected. Thereby, stratification stability increased and turbulent mixing decreased in summer. The water of the reservoir warmed more than
the tributaries resulting in a trend to deeper entrainment of the inflows.

As further indicators of climate change, an increased annual biomass of phytoplankton and species shifts in the phytoplankton community in spring and summer had been observed. During the spring mass development, the diatom Aulacoseira subarctica became dominant in recent years with warm winters and early ice-out. Its unusual spatial pattern with occurrences in aphotic depths could be explained by easier resuspension compared to other diatoms. By being resuspended first and establishing a high inoculum, A. subarctica profits from an earlier ice-out and earlier full circulation. In spite of a reduced nutrient loading to the epilimnion, in summer, the diatom Fragilaria crotonensis was displaced increasingly by cyanobacteria. This species shift could be explained well by the hydrophysical regime shift.

Although, the annual total phytoplankton biomass increased since 1990, the crustacean zooplankton in Saidenbach reservoir did not seem to profit from improved food resources. To the contrary, Daphnia abundances reduced tremendously. We could show that the influcence of fish stocks were underestimated. The stocked silvercarp may have contributed up to 70 % of the total zooplanktivorous fish biomass which had a temperature and density dependent effect. The faster growth of Daphnia at higher temperatures could not compensate for the more actively grazing fish when stock of zooplankitvorous fish was too high. Still, temperature was identified as the most important factor that explained 29 % of the zooplankton phenology, while the second most important predictors were zooplanktivorous fish biomass and nutrient loading, explaining 18 % of the variance.

The importance of submerged macrophytes in shallow lakes is well investigated. To increase also the understanding of their impact and their role during climate change on water quality in deep lakes, a model for stratified lakes that includes submerged macrophytes was developed. The simulations showed that macrophyte effects were mainly positive for water quality and macrophytes in deep lakes were able to potentially reduce summer phytoplankton, especially cyanobacteria by 50 % in 11 m deep and still by 15 % in 100 m deep oligotrophic lakes. Nutrient competition with phytoplankton contributed most to this macrophyte effect. In conclusion, for deep lake restoration the re-establishment of submerged macrophytes might be as important as for shallow lakes. The full lake model includes hydrophysical and ecological submodules and thus will allow further comprehensive climate simulations and the evaluation of the effectivity of adaptive strategies and scenarios for deep lakes and reservoirs. / Der Klimawandel beeinflusst Seeökosysteme vielfältig durch direkte und indirekte Temperatureffekte auf die hydrophysikalische Struktur, die Hydrologie, chemische Kreisläufe und biologische Interaktionen. Die Identifikation von Klimasignalen kann durch Landnutzungs- und weitere Umweltveränderungen überlagert werden. Ziel dieser Arbeit war es, Temperatureffekte von Effekten zu unterscheiden, die durch Gewässermanagement oder anderen Umweltveränderungen verursacht werden. Weiterhin sollten komplexe Prozesse verstanden werden, die zu signifikanten Veränderungen in Seeökosystemen führen. Dieses Verständnis ist für Talsperren- und Gewässermanager von besonderer Bedeutung, um ungewünschten Folgen des Klimawandels entgegenwirken zu können.

Für die Studie wurden Langzeitdaten für meteorologische, hydrophysikalische und biologische Variablen (Phytoplankton, Crustaceen-Zooplankton, Fischbesatz) der Talsperre Saidenbach ausgewertet. Mehrere Indikatoren für die Auswirkungen des Klimawandels konnten basierend auf diesen Daten identifiziert werden. Diese gehören insbesondere eine Erhöhung der Wassertemperatur seit 1975, zeitigere Eisaufbrüche und eine veränderte Schichtungsstruktur. Dabei wurde im Sommer die Schichtungsstabilität höher und die Intensität der Durchmischung geringer. Das Wasser in der Talsperre erwärmte sich stärker als die Zuflüsse, wodurch diese sich zunehmend tiefer und unterhalb der Thermokline einschichten.

Eine zunehmende jährliche Phytoplanktonbiomasse und Artenwechsel innerhalb der Planktongemeinschaft sind weitere Indikatoren für Klimafolgen. Die Kieselalge Aulacoseira subarctica erlangte in Jahren mit warmen Wintern und zeitigen Eisaufbrüchen eine Dominanz während der Frühjahrsentwicklung. Das ungewöhnliche Auftreten dieser Art in aphotischen Tiefen konnte durch eine leichtere Resuspension im Vergleich zu anderen Kieselalgen erklärt werden. Durch zeitige Resuspension gleich nach Eisaufbruch kann A. subarctica ein hohes Inokulum etablieren. Trotz reduzierter Nährstoffzufuhr ins Epilimnion wurde im Sommer die Kieselalge Fragilaria crotonensis vermehrt durch Cyanobakterien verdrängt, was jedoch gut mit den Änderungen der hydrophysikalischen Struktur erklärt werden kann.

Obwohl seit 1990 insgesamt mehr Phytoplankton zur Verfügung steht konnte das Crustaceen- Zooplankton in der Talsperre Saidenbach nicht von diesen verbesserten Nahrungsbedingungen profitieren. Die Daphnia-Abundanzen waren seit 1990 stark verringert. Es konnte gezeigt werden, dass der Einfluss des Fischbesatzes unterschätzt wurde und die künstlich ins System eingebrachten Silberkarpfen zeitweise bis zu 70% der zooplanktivoren Fischbiomasse ausgemacht haben. Zoo- planktivore Fische haben einen temperatur- und dichteabhängigen Effekt auf das Zooplankton. Das schnellere Populationswachstum von Daphnia kann bei hohem Besatz mit zooplanktivoren Fischen nicht die erhöhte Fraßaktivität der Fische ausgleichen. Dennoch konnte Temperatur als der wichtigste Einflussfaktor auf die Phänologie des Zooplanktons identifiziert werden, gefolgt von zooplanktivorem Fisch und Nährstoffzufuhr.

Die Wichtigkeit von submersen Makrophyten in Flachseen ist gut untersucht. Um den Einfluss von Makropyhten auf die Wasserqualität während des Klimawandels auch in tiefen Seen abschätzen zu können, wurde ein komplexes Seemodell entwickelt. Die Simulationen zeigen, dass sich Makrophyten hauptsächlich positiv auf die Wassergüte auswirken und zur Reduktion von Phytoplankton, insbesondere von Cyanobakterien im Sommer, beitragen. In einem 11 m tiefen See betrug die Reduktion 50 %, in 100 m tiefen oligotrophen Seen immer noch 15 %. Die Konkurrenz um Nährstoffe mit dem Phytoplankton war dabei die ursächliche Makrophyten-Plankton-Interaktion. Submerse Makrophyten könnten für die Restaurierung von tiefen Seen folglich genauso wichtig sein, wie für Flachseen. Das komplette Seemodell enthält hydrophysikalische und ökologische Module und ermöglicht damit weitere umfassende Simulationen zur Untersuchung der Auswirkungen des Klimawandels und zur Evaluation von Adaptionsstrategien für Seen und Talsperren.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-167312
Date19 May 2015
CreatorsSachse, René
ContributorsTechnische Universität Dresden, Fakultät Umweltwissenschaften, Prof. Dr. habil. Thomas Berendonk, Dr. Lothar Paul, Dr. Thomas Petzoldt, Prof. Dr. habil. Thomas Berendonk, Prof. Dr. rer. nat. habil. E. Gert Dudel, Prof. Dr. Karline Soetaert
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0029 seconds