L'état actuel de l'art lié à la technologie de conversion de la biomasse a, jusqu'à présent,principalement concerné les méthodes enzymatiques, éventuellement couplées à des prétraitements thermomécaniques ; les biomasses concernées sont généralement riches en cellulose, mais le matériel à haute teneur en amidon brut est également important des deux points stratégique et économique. Notre nouvelle stratégie est une contribution à l’étude de ce dernier type de biomasses riches en amidon, en vue d’une conversion comportant une seule étape de transformation en oligosaccharide et en glucose, à l’aide de la technologie thermo-mécanique de Détente Instantanée Contrôlée DIC. Cette opération a été étudiée,analysée, modélisée et optimisée. Contrairement à un traitement thermique conventionnel,la technologie DIC comporte deux étapes incluant l’instauration d’un vide capable d'accroître l'accessibilité de la vapeur dans la biomasse, puis d’une étape de vide final en vue de réduire la génération de molécules de dégradation thermique du glucose. L’analyse des composés (oligosaccharides, glucose…) a été réalisée ; elle a pu démontrer que le process était étroitement associée à la sévérité du traitement brut. Le prétraitement DIC de faible sévérité mène à des rendements élevés en fractions oligo saccharidiques avec une petite fraction de glucose. Par contre, le traitement DIC de haute sévérité permet d’accéder au glucose comme principal produit final. Au cours de l'étude exploratoire, le cycle de vide et de haute pression d'humidité a été établi, avec comme facteur de réponse le taux de conversion de l'amidon en glucose brut. Les deux facteurs de pression de vapeur d’eau et de vide ont été combinés ensemble afin d'optimiser trois autres facteurs opératoires : la concentration d'acide, le couple de pression/température et le temps de traitement. Le traitement DIC de haute sévérité a été démontré comme étant capable de convertir près de50% d'amidon brut en glucose à l'étape du simple et unique traitement thermomécanique.Une autre étape du processus a été impliquée : il s’agit de l'hydrolyse à l’acide dilué, souvent à la suite du prétraitement DIC. Au cours de l’étape d'optimisation du prétraitement DIC, la méthodologie de surface de réponse a été utilisée pour aider au développement de modèles cinétiques auto-hydrolysés DIC. D'autre part, les modèles empiriques de la cinétique ont été développés. Dans le cas de faible sévérité, le modèle aboutit à des réponses étroitement associées aux deux limites inférieures et supérieures de la concentration acide et du temps de traitement. Par contre, ces modèles quand ils sont obtenus à de niveaux de traitement grande sévérité, ont été jugés seulement associés aux valeurs supérieures de ces paramètres opératoires. Cette observation a été déduite de l’équation polynomiale utilisée, tandis que les modèles cinétiques ont été basés sur une série exponentielle. Une série polynomiale de plus grand ordre serait donc nécessaire pour pouvoir explorer avec précision les données de la surface de réponse pour ce genre d'analyse approfondie à tous les niveaux des facteurs.Lors de l'étape d'optimisation de l’hydrolyse dans une solution d'acide dilué, le premier modèle cinétique consécutive a été développé pour étudier les mécanismes de conversion des polysaccharides totale en glucose et en ses produits de dégradation. Le modèle empirique de surface de réponse a été utilisé pour étudier les effets de facteurs pendant le processus opératoire. La teneur en humidité et le cycle de vide ont été des facteurs communs. Plus le temps de traitement est court et plus la température est élevée, et plus la génération du glucose est importante. Cette étude montre que le traitement DIC de haute sévérité est capable de convertir les polysaccharides totaux en glucose avec une faible dégradation du glucose. Les produits solides résiduels pourraient également faire l’objet d'un traitement enzymatique. / Present state of art related to biomass conversion technology so far was found to concentrate on an enzymatic process, coupled with thermal pretreatment on biomass rich in cellulose. Biomass that rich in crude starch is also important in terms of strategic and economic point of view. The main objective of this study is to adopt a new strategy for a single step conversion of a crude starch material into oligosaccharide and glucose utilizing DIC technology. In contrast to existing thermal based pretreatment, DIC technology involves two vacuum cycles; first vacuum cycle was to increase steam accessibility on biomass and to reduce generation of steam condensate thus avoid losing of monosaccharide and hemicelluloses, while second vacuum cycle was to reduce potential thermal degradation of glucose. Distributions of products formed were found to be closely associated with severity of treatment on crude starch material. At lower DIC severity, pretreatment favors the formations of high oligosaccharide composition with small fraction of glucose; while at high DIC severity, pretreatment favors formation of high glucose as a major end product. During an exploratory study to establish the relevant reaction factors; vacuum cycle and moisture content were the two main factors influencing the conversion of crude starch into glucose.DIC starch conversion into glucose was found to be moisture dependent. Both factors were combined together to optimize the other three factors: pressure/temperature, treatment times, and acid concentration. High DIC severity treatment alone could convert nearly 50% of crude starch into glucose. During DIC optimization, an experimental design was developed and tested with DIC pretreatment in order to obtain a second order polynomial mathematical model that was then applied for response surface methodology (RSM). The interaction nature of above factors was examined and was found they depend on DIC treatment severity. Two experimental designs with low and high DIC severity were developed; Low DIC severity (acid: 0.01-0.05 molar, time: 0.5-3.0 min) and High DIC severity (acid: 0.05-0.20 molar, time: 3.0-10.0 min) with similar temperature range (144-165oC) were used. Data mining operation was done on RSM model to develop a kinetic model at both treatment severities. Kinetic data, including rate constant and activation energy were calculated from kinetic models of both severities to compare with actual dilute acidhydrolysis kinetic studies on two DIC treated samples. It was found that activation energy (Ea)for glucose generation at High DIC severity (Ea: 59.44 kJ/mol) was lower than at optimum dilute acid hydrolysis (Ea: 91.30 kJ/mol); while for glucose degradation, Ea was higher with High DIC severity (Ea: 144.12 kJ/mol) if compared to dilute acid hydrolysis (Ea: 45.14 kJ/mol).This indicates that glucose generation with DIC requires less energy while its degradation needs high energy. This combination was required to maximize glucose generation and minimize glucose degradation. Further studies with non-isothermal state during DIC and dilute acid hydrolysis support this finding. In normal polysaccharide conversion to low molecular weight (LMW) oligosaccharides and glucose procedures; two process steps were involved, namely the first process involved thermal pretreatment followed by a second process with dilute acid hydrolysis. In the present work, attempt was made to exclude dilute acid hydrolysis stage in order to establish that DIC process alone is sufficient for total polysaccharides conversion into LMW mainly glucose fraction. Information gathered from quantitative and statistical analysis on (i) exploratory studies, (ii) kinetic models from RSM of DIC process and (iii) kinetic data based on experimental works during dilute acid hydrolysis study; support the assumption that DIC treatment alone is sufficient for the total conversion required.
Identifer | oai:union.ndltd.org:theses.fr/2012LAROS373 |
Date | 27 April 2012 |
Creators | Sarip, Harun |
Contributors | La Rochelle, Université de Kuala Lumpur (Malaisie), Allaf, Karim, Noor, Mohamad Azemi Mohamad |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0026 seconds