Return to search

Elaboration par Spark Plasma Sintering et caractérisation de composites et multi-couches zircone yttrié/MoSi2(B) pour application barrière thermique auto-cicatrisante / Elaboration by Spark Plasma Sintering and characterization of yttria partially stabilized zirconia/MoSi2(B) composites and multi-layer systems for self-healing thermal barrier coatings

La réparation des revêtements barrières thermiques endommagés par fissuration entraine des coûts de maintenance très élevés. Dans cette étude, qui s’inscrit dans le cadre du projet Européen FP7-SAMBA, il a été proposé d’utiliser des particules de MoSi2(B), revêtues d’une couche d’alumine, comme agent cicatrisant. L’oxydation de celles-ci doit entrainer la formation de silice amorphe qui s’écoule dans la fissure puis réagit avec la barrière thermique en zircone yttriée pour former du zircon. Cette étude traite dans un premier temps de l’élaboration par Spark Plasma Sintering (SPS) de composites modèles composés de zircone yttriée et de particules de MoSi2(B) non revêtues. Les propriétés mécaniques (ténacité, dureté, module d’Young) et thermiques (conductivité thermique, coefficient de dilatation) de ces composites ont été déterminées. Les travaux se sont ensuite orientés vers l’étude du comportement en oxydation cyclique à 1100 °C sous air de ces composites par thermogravimétrie cyclique. La modélisation de l’oxydation de ces composites mais aussi de systèmes multi-couches MoSi2(B)/YPSZ modèles a permis de déterminer les mécanismes et les cinétiques de formation de la silice et du zircon. Une augmentation significative des cinétiques de formation de ces oxydes a été observée lorsque le bore est ajouté dans le MoSi2 ce qui peut être potentiellement très bénéfique pour la cicatrisation des fissures. L'utilisation du procédé SPS a permis de réaliser des systèmes barrières thermiques auto-cicatrisants sur substrats en superalliages à base de nickel revêtus à partir de zircone yttriée et de particules de MoSi2(B) elles-mêmes revêtues d’une couche d’alumine. La pré-oxydation des substrats revêtus favorise la croissance d’une couche d’alumine qui empêche la formation de siliciures par réaction entre les particules et la sous-couche. Ces revêtements présentent une bonne résistance à l’endommagement en cyclage thermique. Les observations post-mortem de ces systèmes mettent en évidence la cicatrisation locale de fissures par formation de silice et de zircon. Bien qu’il ne soit pas possible aujourd’hui de dire si la présence de ces particules augmente ou non la durée de vie de la barrière thermique, par manque de systèmes de référence, ces observations très encourageantes démontrent expérimentalement la validité du concept d’auto-cicatrisation des barrières thermiques proposé dans le cadre de ce projet. / Repair of thermal barrier coatings (TBC) systems damaged by cracking leads to significant maintenance costs. In this project (FP7-SAMBA), it was proposed to use MoSi2(B) particles, coated with an alumina shell, as healing agent for TBCs. Healing particles intercepted by cracks will oxidize preferentially, leading to the formation of amorphous SiO2, which flows into cracks and subsequently reacts with the TBC leading to the formation of a load bearing ZrSiO4 phase. In this study model composite materials were prepared from mixtures of yttria partially stabilized zirconia (YPSZ) and uncoated MoSi2(B) particles by using Spark Plasma Sintering (SPS) technique. Mechanical (toughness, hardness, Young modulus) and thermal (conductivity, coefficient of thermal expansion) properties of these materials were determined. Then, cyclic thermogravimetry analysis (CTGA) was used to study the oxidation behavior of these materials at 1100 °C in air. Kinetics of silica and zircon formations were determined through modelling of the oxidation of composite materials but also the oxidation of multi-layer YPSZ/MoSi2(B) materials. Boron addition was shown to significantly increase silica and zircon formation rates which could be very beneficial for the healing of the cracks. Then, SPS technique was used to sinter self-healing thermal barrier coatings on bond coated Ni-based superalloys from mixtures of YPSZ and Al2O3-coated MoSi2(B) particles. The pre-oxidation of coated substrates was shown to prevent the detrimental formation of silicides by the reaction of MoSi2(B) particles and the bond coat. Good results were obtained upon thermal cycling and post-mortem observations highlight local healing of cracks. At this time, it is too early to quantify the potential effect of the particles on the TBC lifetime due to a lack of reference systems and statistics. However, these observations demonstrate, experimentally, the validity of the self-healing mechanism proposed in the framework of this project.

Identiferoai:union.ndltd.org:theses.fr/2016INPT0124
Date28 November 2016
CreatorsNozahic, Franck
ContributorsToulouse, INPT, Monceau, Daniel, Estournès, Claude
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0029 seconds