Return to search

Probing plasmonic nanostructures

Elektrische und magnetische Emitter können zur Erforschung unterschiedlicher plasmonischer Nanostrukturen genutzt werden. Indem wir die Änderung der Abstrahldynamik und in der Lebensdauer bestimmen, detektieren wir die photonische lokale Zustandsdichte. Diese Zustandsdichte, die eine Eigenschaft der Umgebung ist, ermöglicht uns nicht nur Rückschlüsse auf die elektronischen und andere physikalische Eigenschaften dieser zu treffen sondern auch die allgemeinen Eigenschaften der plasmonischen Nanostruktur im Bezug auf Licht-Materie Kopplung zu bestimmen. Eine starke Licht-Materie-Kopplung ist für die zukünftige Anwendung im Bereich der Quantentechnologien wichtig. Wenn Emitter hierbei mit plasmonischen Nanostrukturen koppeln, fokussieren letztere nicht nur das emittierte Lichts an der Oberfläche im Subwellenlängenbereich sondern ermöglichen durch die Feldüberhöhung an der Oberfläche auch eine starke Licht-Materie-Kopplung. In der Arbeit konzentrieren wir uns auf zwei grundlegend unterschiedliche plasmonische Systeme: zunächst untersuchen wir analytisch den Einfluss von Graphen auf elektrische und magnetische Emitter und diskutieren dann die Lebensdaueränderungen und Strahlungsdynamiken in der Nähe von Silber- und Goldnanostrukturen. Im ersten Teil der Arbeit analysieren wir den Einfluss von Graphen mit einer Bandlücke auf den Emitter und zeigen Möglichkeiten zur experimentellen Bestimmung der Bandlücke auf. Im zweiten Teil modellieren wir die Propagation elektromagnetischer Felder im dreidimensionalen Raum mit Hilfe der Diskontinuierlichen Galerkin Zeitraum Methode mit erweiterten Funktionalitäten. Diese verwenden wir sowohl zur theoretischen Modellierung des ersten dreidimensionalen Fluoreszenlebensdauerabbildungsmikroskopie mit einem einzelnen Quantenemitter als auch zur selbstkonsistent Beschreibung von Emittern in der Nähe eines Goldpentamers. Die Kombination der Studien betont die Stärke von Emittern elektrische, optische und magnetische Eigenschaften zu detektieren. / Electric and magnetic emitters can be used to probe different plasmonic nanostructures. By determining the modification of the radiation dynamics and the lifetimes, we can measure the photonic local density of states. This, being a property of the enviroment, does not only allow us to draw conclusions regarding the electronic and other physical properties of the latter but also regarding the general light-matter coupling properties of the plasmonic nanostructure. A strong light-matter coupling is important for future applications in quantum technology. If emitters couple specifically to plasmonic nanostructure, the latter do not only focus the emitted light at the sub-wavelength scale at the surface of the structure but also allow for such a strong light-matter coupling due to the field enhancement at the surface. In this work, we focus on two different basic plasmonic systems: first, we study analytically the influence of graphene on electric and magnetic emitters, and second we discuss lifetime modifications and radiation dynamics close to silver and gold nanostructures. In the first part of this work, we specifically focus on the influence of graphene exhibiting a finite band gap on the emitter. In the second part, we model the propagation of electromagnetic fields in three-dimensional space making use of the discontinuous Galerkin time-domain method with extended functionalities. This framework we apply to model the first three-dimensional scanning-probe fluorescence-lifetime imaging microscopy by use of a single quantum-emitter as well as for a self-consistent description of emitters in the proximity of a gold pentamer. The combination of these studies stress that the strength of emitters lies in the detection of electronic, optical and magnetic properties.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/18310
Date01 December 2016
CreatorsWerra, Julia Franziska Maria
ContributorsBusch, Kurt, Mortensen, N. Asger, Scheel, Stefan
PublisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät
Source SetsHumboldt University of Berlin
LanguageEnglish
Detected LanguageGerman
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf
RightsNamensnennung - Keine kommerzielle Nutzung - Keine Bearbeitung, http://creativecommons.org/licenses/by-nc-nd/3.0/de/

Page generated in 0.0021 seconds