Um die komplexe Dynamik von Neuronen und deren Informationsverarbeitung mittels Pulssequenzen zu verstehen, ist es wichtig, die stationäre Puls-Aktivität zu charakterisieren. Die statistischen Eigenschaften von Pulssequenzen können durch vereinfachte stochastische Neuronenmodelle verstanden werden. Eine gut ausgearbeitete Theorie existiert für die Klasse der Erneuerungsmodelle, welche die statistische Unabhängigkeit der Interspike-Intervalle (ISI) annimmt. Experimente haben jedoch gezeigt, dass viele Neuronen Korrelationen zwischen ISIs aufweisen und daher nicht gut durch einen Erneuerungsprozess beschrieben werden. Solche Korrelationen können durch Nichterneuerungs-Modelle erfasst werden, welche jedoch theoretisch schlecht verstanden sind. Diese Arbeit ist eine analytische Studie von Nichterneuerungs-Modellen, die zwei bedeutende Korrelationsmechanismen untersucht: farbiges Rauschen, welches zeitlich-korrelierten Input darstellt, und negative Puls-Rückkopplung, welche Feuerraten-Adaption realisiert. Für das "Perfect-Integrate-and-Fire" (PIF) Modell, welchen durch ein allgemeines Gauss''sches farbiges Rauschen getrieben ist, werden die Statistiken höherer Ordnung der Output-Pulssequenz hergeleitet, insbesondere der Koeffizient der Variation, der serielle Korrelationskoeffizient (SCC), die ISI-Dichte und der Fano-Faktor. Weiterhin wird die Dynamik des PIF Modells mit Puls-getriggertem Adaptionsstrom und weissem Stromrauschen im Detail analysiert. Die Theorie liefert einen Ausdruck für den SCC, der für schwaches Rauschen aber beliebige Adaptions-Stärke und Zeitskale gültig ist, sowie die lineare Antwortfunktion und das Leistungsspektrum der Pulssequenz. Ausserdem wird gezeigt, dass ein stochastischer Adaptionsstrom wie ein langsames farbiges Rauschen wirkt, was ermöglicht, die dominierende Quellen des Rauschen in einer auditorischen Rezeptorzelle zu bestimmen. Schliesslich wird der SCC für das fluktuations-getriebene Feuerregime berechnet. / To understand the complex dynamics of neurons and its ability to process information using a sequence of spikes, it is vital to characterize its stationary spontaneous spiking activity. The statistical properties of spike trains can be explained by reduced stochastic neuron models that account for various sources of noise. A well-developed theory exists for the class of renewal models, in which the interspike intervals (ISIs) are statistically independent. However, experimental studies show that many neurons are not well described by a renewal process because of correlations between ISIs. Such correlations can be captured by generalized, non-renewal models, which are, however, poorly understood theoretically. This thesis represents an analytical study of non-renewal models, focusing on two prominent correlation mechanisms: colored-noise driving representing temporally correlated inputs, and negative feedback currents realizing spike-frequency adaptation. For the perfect integrate-and-fire (PIF) model driven by a general Gaussian colored noise input, the higher-order statistics of the output spike train is derived using a weak-noise analysis of the Fokker-Planck equation. This includes formulas for the coefficient of variation, the serial correlation coefficient (SCC), the ISI density and the Fano factor. Then, the dynamics of a PIF model with a spike-triggered adaptation and a white-noise current is analyzed in detail. The theory yields an expression for the SCC valid for weak noise but arbitrary adaptation strengths and time scale, and also provides the linear response to time-dependent stimuli and the spike train power spectrum. Furthermore, it is shown that a stochastic adaptation current acts like a slow colored noise, which permits to determine the source of spiking variability observed in an auditory receptor neuron. Finally, the SCC is calculated for the fluctuation-driven spiking regime by assuming discrete states of colored noise or adaptation current.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/17476 |
Date | 30 September 2013 |
Creators | Schwalger, Tilo |
Contributors | Lindner, Benjamin, Schimansky-Geier, Lutz, Gabbiani, Fabrizio |
Publisher | Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I |
Source Sets | Humboldt University of Berlin |
Language | English |
Detected Language | English |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | Namensnennung, http://creativecommons.org/licenses/by/3.0/de/ |
Page generated in 0.0026 seconds