Depuis la première observation du phénomène de Diffusion Raman Exaltée de Surface (DRES) en 1974 de nombreuses méthodes ont été développées pour contrôler l'arrangement de nanostructures métalliques sur une surface dans le but d'augmenter le signal de diffusion Raman. La valeur du facteur d'amplification de la DRES résulte principalement de l’accroissement localisé du champ électromagnétique pour des surfaces métalliques nanostructurées. Des études antérieures ont révélé que l'espacement nanométrique entre les nanoparticules constituait des zones de forte exaltation appelées «points chauds». Nous avons développé et breveté une méthode de lithographique assistée par AFM permettant la fabrication de surfaces métalliques. Il a été démontré que cette méthode fournissait une approche relativement simple pour réaliser d’une part des surfaces reproductibles à géométrie contrôlée à l’échelle nanométrique, et d’autre part des surfaces modèles pour étudier l'influence de la géométrie des motifs sur l'effet DRES. Afin d'étudier la relation entre les propriétés optiques et la géométrie de nos systèmes la résonance plasmon localisée de surface (LSPR) et le facteur d'exaltation du champ électrique local ont été simulés par éléments finis. Les zones de forte exaltations ont été localisées sur les nanostructures par microscopie par photoémission d'électrons (PEEM) et l'effet DRES a été démontré en effectuant des mesures Raman avec plusieurs molécules cibles. Les corrélations effectuées entre les résultats de PEEM, les calculs du champ local et les facteurs d’exaltation Raman seront présentées en lien avec les paramètres géométriques des motifs de nanostructures. / Since the first observation of Surface Enhanced Raman Scattering (SERS) in 1974 a variety of methods have been developed to physically control the arrangement of metallic nanostructures onto a surface in order to enhance Raman signals. The magnitude of the SERS enhancement factor is mainly driven by the enhanced local electromagnetic field in nanostructured metal surfaces. Gaps between adjacent nanoparticles give rise to strong enhancement effects, often referred as ‘hot spots’. One way to produce highly efficient SERS substrates is to develop a reproducible system of interacting metal nanostructures capable of high field enhancement.We patented a force-assisted Atomic Force Microscopy lithographic method allowing the fabrication of a metallic substrate. It will be shown that this method also provides a relatively simple approach to realize reproducible patterns with controlled geometry that can be used to study the influence of specific pattern geometry on SERS phenomenon.In order to investigate the relationship between optical properties and pattern geometries, localized surface plasmon resonance (LSPR) and local electric field enhancement are simulated.Whereas electric field enhancement regions (hot spot) have been observed on the top of the nanostructures with PhotoEmission Electron Microscopy (PEEM), SERS effect has been demonstrated by performing Raman measurements using several probe molecules. Correlations between PEEM measurements, Raman exaltation and local field calculations are presented in relation with the geometrical parameters of the nanostructured patterns.
Identifer | oai:union.ndltd.org:theses.fr/2016LEMA1020 |
Date | 13 December 2016 |
Creators | Edely, Mathieu |
Contributors | Le Mans, Bardeau, Jean-Francois, Delorme, Nicolas, Louarn, Guy |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0024 seconds