Return to search

Triply-Resonant Cavity-Enhanced Spontaneous Parametric Down-Conversion

Die verlässliche Erzeugung einzelner Photonen mit wohldefinierten Eigenschaften in allen Freiheitsgraden ist entscheidend für die Entwicklung photonischer Quantentechnologien. Derzeit basieren die wichtigsten Einzelphotonenquellen auf dem Prozess der spontanen parameterischen Fluoreszenz (SPF), bei dem ein Pumpphoton in einem nichtlinearen Medium spontan in ein Paar aus Signal und Idlerphotonen zerfällt. Resonator-überhöhte SPF, also das Plazieren des nichtlinearen Mediums in einem optischen Resonator, ist ein weit verbreitetes Verfahren, um Einzelphotonenquellen mit erhöhter Helligkeit und angepassten spektralen Eigenschaften zu konstruieren. Das Anpassen der spektralen Eigenschaften durch gezielte Auswahl der Resonatoreigenschaften ist besonders für hybride Quantentechnologienvon Bedeutung, welche darauf abzielen, unterschiedliche Quntensysteme so zu kombinieren, dass sich deren Vorteile ergänzen. Diese Arbeit stellt eine umfassende theoretische und experimentelle Analyse der dreifach resonanten SPF vor. Das aus der Literatur bekannte theoretische Modell wird diesbezüglich verbessert, dass der Einfluss sämtlicher Eigenschaften des Resonators auf die wichtigen experimentellen Größen (z.B. die Erzeugungsrate) gezielt ausgewertet werden kann. Dieses verbesserte und hoch genaue Modell stellt eine wichtige Grundlage für die Entwicklung und Optimierung neuartiger Photonenpaarquellen dar. Im experimentellen Teil dieser Arbeit wird der Aufbau und die Charakterisierung einer dreifach resonanten Photonenpaarquellen präsentiert. Die neu entwickelte digitale Regelelektronik sowie ein hochstabiler, schmalbandiger Monochromator welcher auf monolitischen, polarisationsunabhängigen Fabry-Pérot Resonatoren basiert, werden vorgestellt. Indem diese temperaturstabilisierten Resonatoren als Spetrumanalysator verwendet werden, wird zum ersten Mal die Frequenzkammstruktur des Spektrums der erzeugten Signal- und Idlerphotonen nachgewiesen. Des Weiteren wird der Einfluss der Pumpresonanz auf die Korrelationsfunktion und die Zweiphotoneninterferenz von Signal- und Idlerphotonen simuliert und vermessen. Abschließend werden Experimente aus dem Bereich der hybriden Quantennetzwerke präsentiert, in welchen Quantenfrequenzkonversion verwendet wird um die erzeugten Signalphotonen in das Telekommunikationsband zu transferieren. Dabei wird nachgewiesen, dass das temporale Wellenpaket durch die Konversion nicht beeinflusst wird und aufgezeigt, wie Quantennetzwerke von kommerziellen Telekommunikationstechnologien profitieren können. / The consistent generation of single photons with well-defined properties in all degrees of freedom is crucial for the development of photonic quantum technologies. Today, the most prominent sources of single photons are based on the process of spontaneous parametric down-conversion (SPDC) where a pump photon spontaneously decays into a pair of signal and idler photons inside a nonlinear medium. Cavity-enhanced SPDC, i.e., placing the nonlinear medium inside an optical cavity, is widely used to build photon-pair sources with increased brightness and tailored spectral properties. This spectral tailoring by selective adjustment of the cavity parameters is of particular importance for hybrid quantum technologies which seek to combine dissimilar quantum systems in a way that their advantages complement each other. This thesis provides a comprehensive theoretical and experimental analysis of triply-resonant cavity-enhanced SPDC. We improve the theoretical model found in the literature such that the influence of all resonator properties on the important experimental parameters (e.g., the generation rate) can be analyzed in detail. This convenient and highly accurate model of cavity-enhanced SPDC represents an important basis for the design and optimization of novel photonpair sources. The experimental part of this thesis presents the setup and characterization of a triply-resonant photon-pair source. We describe the digital control system used to operate this source over days without manual intervention, and we present a highly stable, narrow-linewidth monochromator based on cascaded, polarization-independent monolithic Fabry-Pérot cavities. Utilizing these temperature-stabilized cavities as a spectrum analyzer, we verify, for the first time, the frequency comb spectral structure of photons generated by cavity-enhanced SPDC. We further simulate and measure the impact of the pump resonance on the temporal wave-packets and the two-photon interference of signal and idler photons. Finally, we present a series of experiments in the context of hybrid quantum networks where we employ quantum frequency conversion (QFC) to transfer the generated signal photons into the telecommunication band. We verify the preservation of the temporal wave-packet upon QFC and highlight how quantum networks can benefit from advanced commercial telecommunication technologies.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/20983
Date22 July 2019
CreatorsAhlrichs, Andreas
ContributorsBenson, Oliver, Eschner, Jürgen, Steinmeyer, Günter
PublisherHumboldt-Universität zu Berlin
Source SetsHumboldt University of Berlin
LanguageEnglish
Detected LanguageEnglish
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf
Rights(CC BY 3.0 DE) Namensnennung 3.0 Deutschland, http://creativecommons.org/licenses/by/3.0/de/

Page generated in 0.0065 seconds