La Tesis está compuesta por un capítulo introductorio y cuatro capítulosque pasamos a describir.El Capítulo 2 contiene un análisis de las funciones que son posiblementemódulo de convexidad (m.c.) para un espacio de Banach uniformementeconvexo (UC). Se muestra que las funciones m.c. están caracterizadas,salvo equivalencia, por ciertas propiedades clásicas de éstas.En el Capítulo 3, se estudia la noción de m.c. de una función convexadefinida en un espacio de Banach. Éste es el primer trabajo con resultadosgenerales y completos en espacios de Banach. Se muestra que un espacio essuperreflexivo sii admite una función (UC) definida en todo el espacio.En el Capítulo 4 se resuelve un problema establecido por Godefroy yZizler; un espacio de Banach superreflexivo con base de Schauder admiteuna norma (UC) que hace monótona a la base. Se obtienen mejoras deestimaciones de James y Gurari.En el Capítulo 5 el autor estudia la noción del módulo de cuadratura. Éstepermite reconocer la (UC) y la suavidad uniforme. El autor define laversión local, y prueba varias caracterizaciones del comportamientopuntual de la norma. / The thesis consists of one introductory chapter and four chapterscontaining original mathematical results. Let us pass to a briefdescription of the main results.Chapter 2 contains an analysis of the possible modulus of rotundityfunctions (m.r.f) for a given uniformly rotund (UC) Banach space. It isshown that m.r.f. are characterized, up to equivalence, by certainclassical properties of them.In Chapter 3, the notion of m.r. for a convex function defined on a Banachspace is studied. This seems to be the first instance of rather completegeneral results on Banach spaces. It is shown that a Banach space issuperreflexive iff it admits a (UC) function defined on the whole space.In Chapter 4 a problem asked by Godefroy and Zizler is solved; asuperreflexive Banach space with Schauder basis can be renormed by (UC)norm which makes the given basis monotone. An improvement of a result ofGurarii is an immediate corollary.In Chapter 5 the author studies the notion of modulus of squareness. Itallows to recognize (UC) and uniform smoothness. The author succeeds todefine the local version, and proves various characterizations ofpointwise behaviour of the norm.
Identifer | oai:union.ndltd.org:TDX_UM/oai:www.tdx.cat:10803/10965 |
Date | 18 October 2007 |
Creators | Guirao Sánchez, Antonio José |
Contributors | Orihuela Calatayud, José, Troyanski, Stanimir, Universidad de Murcia. Departamento de Matemáticas |
Publisher | Universidad de Murcia |
Source Sets | Universidad de Murcia |
Language | Spanish |
Detected Language | Spanish |
Type | info:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion |
Format | application/pdf |
Source | TDR (Tesis Doctorales en Red) |
Rights | ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como a sus resúmenes e índices., info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds