Return to search

Modeling and test of loop heat pipes for civil and military avionic applications / Modélisation et tests d’une boucle diphasique capillaire (LHP) pour applications avioniques civile et militaire

Dans les années à venir, l’industrie de l’aéronautique doit améliorer le contrôle thermique des composants et modules hautement intégrés. Les approches de refroidissement standard, utilisant l’air forcé ne sont plus utilisables. Il est donc nécessaire de développer de nouvelles technologies capables d’offrir des solutions compatibles avec ces nouvelles problématiques. Une revue bibliographique approfondie est présentée pour montrer les solutions existantes pour l’avionique. Les systèmes à changement de phase, tels que les boucles diphasiques capillaires (LHPs), sont très attractifs puisqu’ils peuvent être utilisés pour transporter la chaleur vers une grande surface d’un radiateur qui dissipera la chaleur vers le milieu ambiant. Une première famille de LHP, conçue et réalisée par la compagnie Atherm, et remplie avec du méthanol, est décrite. Deux autres familles de LHP sont également présentées. La première a été réalisée par la société ATHERM et a un condenseur et des lignes de transports modifiés, afin d’être intégrée sur une carte électronique existante. La deuxième famille, a été conçue et réalisée par l’Institut of Thermal Physics (ITP), sur la base de spécifications similaires. Un banc d’essai expérimental est conçu et réalisé pour tester ces systèmes. Les effets de la charge en fluide, baïonnette, et mèche secondaire, sont observés. Des tests d’orientation et d’accélération sont réalisés sur des LHPs intégrées dans un rack aéronautique. Même une certaine sensibilité aux orientations et accélérations est observée, les LHPs fonctionnement toujours jusqu’à l’accélération maximale testée de 6 G. Un modèle stationnaire d’une boucle diphasique basé sur une approche à plusieurs échelles est développé. Plusieurs niveaux de complexité et de précision peuvent être sélectionnés pour le modèle des composants individuels de la boucle, allant du modèle nodal au modèle 3D. Le modèle est validé avec les données expérimentales. Un bon accord entre les simulations numériques et les résultats expérimentaux est obtenu. Les résultats numériques montrent que la charge de fluide dans le réservoir affecte le comportement thermique de la LHP en modifiant la répartition des flux de chaleurs. Des gradients de température importants sont observés dans la plaque du condenseur, et un nouveau tracé de la ligne condenseur est proposé. Plusieurs modifications de l’évaporateur sont analysées. La diminution la plus importante de la résistance thermique de l’évaporateur est obtenue par une bonne disposition des rainures axiales de la mèche, associée à une semelle optimisée, ou à des rainures radiales. / In the coming years, the avionics industry will have to improve the thermal control of both existing and emerging highly integrated electronic components and modules. The standard cooling approaches using forced air are no longer applicable. It is necessary to develop new technologies being able to offer solutions compatible with those new problematic. An extensive literature review is presented to show the existing cooling solutions for avionics. Two-phase passive systems, such as LHPs are very attractive as they may be used as heat spreader, associated with a classical heat sink to dissipate the heat. A first family of LHP, designed and manufactured by the ATHERM Company and filled with methanol as the working fluid is described. Two other LHP families are also presented. The first one was manufactured by ATHERM and has modified condenser and transport line shapes, in order to be integrated into an existing electronic card. The second one was manufactured and designed by the Institute of Thermal Physics, on the same specification basis. An experimental setup is designed and built to test these LHPs. The effects of fluid fill charge, bayonet and secondary wick are observed. Orientation and acceleration tests are conducted on LHPs integrated within an avionic rack. Even if the LHPs exhibited sensitivity to orientation and acceleration, no failure of the LHP was observed up to the maximum applied acceleration (6 G). A steady state model of LHP based on a multi-level approach is developed. Various levels of complexity and precision can be selected for the model of the individual component, going from the nodal to the 3D model. The model is validated with experimental data from the laboratory tests. A good agreement is achieved between the experimental and the numerical data. The numerical results show that the fluid fill charge within the reservoir affects the thermal behavior of the LHP, by modifying the heat flux distribution. High temperature gradients are highlighted in the condenser plate and a redesign of its shape is proposed. Various modifications of the evaporator design are considered. The most important decrease of the evaporator thermal resistance is brought by a good disposition of the axial vapor grooves associated with an optimized saddle shape or radial vapor grooves.

Identiferoai:union.ndltd.org:theses.fr/2015ISAL0132
Date15 December 2015
CreatorsHodot, Romain
ContributorsLyon, INSA, Lefèvre, Frédéric, Sartre, Valérie
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0026 seconds