Return to search

Spannungsinduzierte Supraleitung in undotierten BaFe2As2-Dünnschichten

In der vorliegenden Dissertation werden Dünnschichten aus dem nicht-supraleitenden BaFe2As2 (Ba122) auf eisengepufferten Spinell-Einkristallsubstraten mittels der gepulsten Laserdeposition abgeschieden, strukturell charakterisiert und auf ihre physikalischen Eigenschaften hin untersucht. Durch das kohärente Aufwachsen der Ba122-Schicht bis zu einer kritischen Dicke, d_c, kommt es zu einer tetragonalen Verzerrung der Ba122-Einheitszelle (nachgewiesen durch Röntgendiffraktometrie), die zu einer supraleitenden Phase führt.

In Dünnschichten mit einer Dicke der Ba122-Schicht d_c < 30 nm sind zwei Bereiche der Supraleitung existent. Ab einer Temperatur von 35 K werden erste Zeichen einer supraleitenden Phase gemessen. Es wird gezeigt, dass im Bereich zwischen 35 K und 15 K fadenförmige Supraleitung in Bereichen mit leicht geringerem Spannungszustand vorliegt. Gefunden wird dies mithilfe von Messungen in einem Suszeptometer mit supraleitendem Quanteninterferenzdetektor (SQUID-MS), durch Elektronen-Rückstreu-Beugung sowie mittels des Vergleichs mit isovalent dotiertem Ba122. Die Übereinstimmung in den strukturellen Daten der Dünnschichten und von isovalent dotierten Einkristallen zeigt, dass die auf Eisen basierenden Supraleiter eine starke Abhängigkeit von den strukturellen Parametern besitzen und strukturelle Veränderungen großen Einfluss auf die supraleitenden Eigenschaften haben.

Unterhalb von 15 K wird anhand von Transportmessungen und Messungen in einem SQUID-MS nachgewiesen, dass Massivsupraleitung vorliegt. Messbare kritische Stromdichten bestätigen das Vorliegen einer solchen Phase in der gesamten Probe. Die Untersuchung der Flusslinienverankerungseigenschaften der Phase unterhalb von 15 K belegt, dass in sehr dünnen Schichten von d <= 10 nm die magnetische Flusslinienverankerung existiert.

Eine Vergrößerung der Schichtdicke führt zur Bildung von Defekten durch die Gitterfehlpassung zwischen Eisen- und Ba122-Schicht. Die Bildung dieser Defekte wird durch In-situ-Untersuchungen mittels Beugung hochenergetischer Elektronen bei Reflexion und Ex-situ-Untersuchungen mittels Transmissionselektronenmikroskopie, Atomkraftmikroskopie und Röntgendiffraktometrie nachgewiesen. Ab einer Dicke von ca. 30 nm fängt die Schicht an zu relaxieren. Eine Massivsupraleitungsphase kann in diesem Fall nicht mehr beobachtet werden. Eine weitere Vergrößerung der Dicke bis ca. 80 nm führt erneut zu nicht-supraleitenden Massivmaterialeigenschaften. Ein magnetischer Übergang wird bei ca. 140 K gemessen, wobei die Gitterparameter Massivmaterialeigenschaften aufweisen.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-133035
Date19 February 2014
CreatorsEngelmann, Jan
ContributorsTechnische Universität Dresden, Fakultät Mathematik und Naturwissenschaften, Prof. Dr. rer. nat. Ludwig Schultz, Prof. Dr. rer. nat. habil. Paul Seidel
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
Languagedeu
Detected LanguageGerman
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0019 seconds