O objetivo deste trabalho é estudar aproximação na esfera por uma soma com pesos de harmônicos esféricos. Apresentamos condições necessárias e suficientes sobre os pesos para garantir a convergência, tanto no caso contínuo quanto no caso Lp. Analisamos a ordem de convergência dos processos aproximatórios usando um módulo de suavidade esférico relacionado à derivada forte de Laplace-Beltrami. Incluímos provas para vários resultados sobre a derivada forte de Laplace-Beltrami, já que não conseguimos encontrá-las na literatura / The subject of this work is to study approximation on the sphere by weighted sums of spherical harmonics. We present necessary and sufficient conditions on the weights for convergence in both, the continuous and the Lp cases. We analyse the convergence rates of the approximation processes using a modulus of smoothness related to the strong Laplace- Beltrami derivative. We include proofs for several results related to such a derivative, since we were unable to find them in the literature
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-08052007-164553 |
Date | 08 March 2007 |
Creators | Piantella, Ana Carla |
Contributors | Menegatto, Valdir Antonio |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0018 seconds