Return to search

Mechanismen des Elektronentransfers in molekularen Systemen

Elektronentransfer spielt eine wichtige Rolle in vielen Bereichen der
Physik und Chemie. Ausgehend von rein klassischen Beschreibungen wie dem
beruehmten Marcus-Modell bis hin
zu komplexen quantenmechanischen Ansaetzen unter Beruecksichtigung
vieler Reaktionskoordinaten wurden viele Modelle aufgestellt, um den
Elektronentransfer zu beschreiben und Transferraten zu berechnen.
Dass diese Modelle meist nur in einer begrenzten Anzahl von
¨Szenarien¨ erfolgreich sind liegt an der Fuelle von
Mechanismen, die den Elektronentransfer beeinflussen, je nachdem, welches
System mit seinen charakteristischen Zustandsenergien und
Kopplungselementen betrachtet wird, und welche aeusseren Bedingungen wie
Temperatur oder Loesungsmittel herrschen. Mechanismen wie ¨thermisch
aktiviertes Tunneln¨ beeinflussen beobachtbare Phaenomenen wie
¨Trapping¨.
In dieser Arbeit wird die Elektronentransferdynamik mit
Bewegungsgleichungen fuer eine reduzierte Dichtematrix beschrieben,
deren Herleitung ausgehend von der Liouville-von Neumann-Gleichung
ueber die Nakayima-Zwanzig-Gleichung fuehrt.
Durch Ankopplung an ein Waermebad werden dissipative Effekte integriert.
Zunaechst wird diese Theorie auf Modellsysteme angewendet, um die
verschiedenen Elektronentransfer-Mechanismen besser zu verstehen. Dann
wird die Dynamik von konkreten intramolekularen Transferreaktionen
in realen Molekuelen berechnet und die Ergebnisse mit denen
von Experimenten und anderer Theorien verglichen.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:17338
Date30 January 1997
CreatorsFuchs, Christofer
ContributorsTechnische Universität Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageGerman
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0027 seconds