Les superprocessus sont des processus de markov a valeurs mesures. Ils sont caracterises par un processus markovien sous-jacent et un mecanisme de branchement spatial. lorsque le mecanisme de branchement est restreint a un domaine de l'espace, appele ensemble de catalyse, on parle alors de superprocessus avec catalyse. Dans le premier chapitre nous rappelons la construction du super-mouvement brownien avec catalyse, puis nous etablissons des proprietes de continuite trajectorielle. Nous demontrons egalement que hors de l'ensemble de catalyse, le super-mouvement brownien possede une densite aleatoire solution de l'equation de la chaleur. Dans le deuxieme chapitre nous etudions l'image du super-mouvement brownien a l'aide d'un processus a valeurs trajectoires, appele serpent brownien. Enfin dans le troisieme chapitre nous etablissons, a l'aide du serpent brownien et d'une methode de subordination, des resultats sur la dimension de hausdorff du support des superprocessus avec un mecanisme de branchement general, ainsi que des resultats d'absolue continuite.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00007575 |
Date | 28 March 1997 |
Creators | Delmas, Jean-François |
Publisher | Université Pierre et Marie Curie - Paris VI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0022 seconds