La formulation de médicaments regroupe des technologies innovantes où l'usage de matières premières naturelles émerge du fait de contraintes environnementales grandissantes. Les huiles végétales par exemple sont plébiscitées grâce à leurs propriétés remarquables en terme de solubilisation de principes actifs, de biocompatibilité et de biodégradabilité. Afin d'élargir leurs applications, notamment pour la libération prolongée de principes actifs, la solidification de ces huiles par réticulation a été envisagée à l'aide d'une chimie douce, c'est-à-dire respectueuse des principes de la chimie verte. La silice a été choisie pour réaliser la réticulation par réaction sol-gel d'huiles végétales et ainsi obtenir des matériaux hybrides inorganique/organique d'origine naturelle. L'étude a consisté à fonctionnaliser des huiles végétales à l'aide de précurseurs silylés en utilisant une chimie sans solvant ni catalyseur, pour obtenir des huiles réticulables par voie sol-gel. Deux voies chimiques de fonctionnalisation ont été employées. La première, difficilement contrôlable, été basée sur une réaction époxy-amine où des huiles de lin ou de soja époxydées ont été utilisées. La seconde reposait sur la valorisation d'huile de ricin porteuse d'un groupement hydroxyle via une réaction hydroxy-isocyanate. Les excellents résultats obtenus ont permis de poursuivre l'étude par la formulation de l'huile de ricin silylée grâce à un nouveau procédé d'émulsion huile/eau thermo-stabilisée. Simple et robuste, ce procédé a rendu possible de façon concomitante la mise en forme et la solidification de microparticules hybrides. Les microparticules présentent des distributions de taille homogènes (20 à 200 µm), sont sphériques et capables de piéger des molécules lipophiles. Ainsi une molécule modèle, a été encapsulé avec des rendements très satisfaisants et sa libération a été totale après 8h en milieu physiologiques simulé. En modifiant la composition des microparticules (ratio inorganique / organique), il a été possible de prolonger les cinétiques de libération et de réduire significativement « l’effet burst ». La biocompatibilité de ces microparticules a été démontrée in vitro. Enfin dans l’optique de correctement caractériser la réaction sol-gel, différentes techniques analytiques ont été explorées pour l’étude in situ de la réticulation et l’identification d’un catalyseur biocompatible. Ces travaux ont permis de détailler les mécanismes des réactions d’hydrolyse et de polycondensation et ont ouvert la voie à un meilleur contrôle des cinétiques de réticulation des microparticules. De plus, il est apparu que la maîtrise de cette réaction semble être indispensable afin d'obtenir des objets "stabilisés " aux propriétés identiques et aux cinétiques de libération reproductibles. En conclusion, il a été démontré que la chimie sol-gel appliquée aux huiles naturelles offre des possibilités d’innovation en formulation galénique tout en respectant les contraintes environnementales et de santé et a permis le développement de matériaux originaux aux propriétés modulables. / Drug formulation is gathering innovative technologies where the use of natural products for the preparation of drug delivery systems is getting more and more considerations because of environmental concerns. For instance, vegetable oils get increasingly used because of their outstanding properties in terms of drug solubilization, biocompatibility and biodegradability. For expanding their application, to drug sustained-release for instance, oils have to be hardened under mild conditions with respect to green chemistry principals. The silica condensation was therefore chosen as cross-linking reaction by the mean the sol-gel reaction which when applied to vegetable oils led to biosourced hybrid organic/inorganic materials. To do so, oils were functionalized with alkoxysilanes precursors without solvent nor catalyst in order to obtain cross-linkable systems. Two chemical paths were studied. The first one, based on an epoxy-amine reaction between epoxydized linseed or soybean oils and the alkoxysilane precursor ended up with an uncontrolled reaction and a triglyceride disruption. The second, used castor oil as an hydroxylated raw material and was based on the hydroxy-isocyanate reaction. Valuable results were obtained and this silylated oil was formulated thanks to a new oil/water thermo-stabilized emulsion process. Simple and robust, this process allowed to simultaneously shape and harden hybrid microparticles. Ranging between 20 and 200 µm in diameter, hybrid microparticles were spherical, homogeneously distributed and were capable of entrapping and releasing lipophilic molecules. As a model, ibuprofen was efficiently encapsulated and was fully released over 8 hours in a simulated buffer. Furthermore, by changing the composition of hybrid microparticles (inorganic/organic ratio), it was also possible to extend release kinetics and significantly reduce the burst effect. Then, biocompatibility of those hybrid microparticles was demonstrated in vitro and an innovative study of the cross-linking reaction was performed. This study aimed to properly understand hydrolysis and polycondensation mechanisms and took the form of an in situ the sol-gel reaction monitoring. It allowed to identify an alternative biocompatible catalysts and gave an insight on how those reactions can be controlled to reach “stabilized" hybrids with constant properties and exhibiting robust and reproducible drug sustained-releases. Finally, it has been demonstrated that the sol-gel chemistry applied to vegetable oils for the synthesis of original and tunable hybrid materials with concerns to environmental and health issues, opened the gate towards innovations in drug formulation.
Identifer | oai:union.ndltd.org:theses.fr/2017MONTT184 |
Date | 20 October 2017 |
Creators | Gallon, Gilmary |
Contributors | Montpellier, Devoisselle, Jean-Marie, Pouëssel-Aubert, Anne |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0027 seconds