Return to search

Synthesis, Characterization and Optimization of New Thermoelectric Materials / Synthèse, caractérisation et optimisation de nouveaux matériaux thermoélectriques

Les matériaux thermoélectriques (TE) permettent de convertir directement de la chaleur en électricité et vice-versa. Les objectifs de cette thèse étaient de tenter d'améliorer les performances TE de trois familles de matériaux et de mieux comprendre le lien entre les propriétés physiques (électriques, thermiques, magnétiques) généralement mesurées dans une large gamme de température (5–700 K) et les microstructures/compositions chimiques observées. Généralement, les matériaux ont été synthétisés par des techniques de métallurgie des poudres et densifiés par spark plasma sintering. La majeure partie de nos travaux a concerné la famille des matériaux tétraédrites, dérivés du minéral naturel (Cu,Ag)10(Zn,Fe)2(Sb,As)4S13, présentant des propriétés TE prometteuses, récemment mises en évidence. D’abord, les propriétés TE de huit tétraédrites naturelles de provenance différente ont été étudiées. Nous avons montré que leurs propriétés physiques sont plutôt prévisibles selon leur composition chimique et finalement peu différentes selon leur origine. Les propriétés TE de mélanges de tétraédrites naturelles et synthétiques obtenus par broyage mécanique ont ensuite été déterminées. Ce procédé fortement énergétique produit des particules de taille nanométrique des deux phases qui forment une solution solide pendant le frittage. Par contre, un broyage manuel conserve la présence des deux phases, ce qui conduit à de plus faibles performances TE. Ensuite, nous avons montré que la substitution Sb <-> As, usuelle dans les spécimens naturels, n’influence que faiblement les propriétés TE. Enfin, les propriétés TE de manganites de calcium et de polymères conducteurs ont également été étudiées / Thermoelectric (TE) materials allow direct conversion between heat and electricity. The aim of this thesis was to try to improve the thermoelectric performance of three different families of materials and to better understand the link between the various physical properties (electrical, thermal, magnetic) generally measured in a broad temperature range (5–700 K) and the observed microstructure/chemical composition. In general, the materials were synthesized by powder metallurgy techniques and densified by spark plasma sintering (SPS). The major part of our studies concerns the tetrahedrite family of materials, derived from the mineral tetrahedrite, (Cu,Ag)10(Zn,Fe)2(Sb,As)4S13, whose promising thermoelectric properties were only recently discovered. In a first approach, the TE properties of eight natural tetrahedrites of different geographic origin are studied. It is shown that they all behave rather predictably and uniformly. Next, the properties of ball milled mixtures of natural and synthetic tetrahedrites are investigated. This high-energy process yields nanoscale particles of the two phases, which form a solid solution during the sintering. Low-energy hand grinding preserves the two-phase nature and results in inferior TE performance. Because arsenic is a common substituent in natural specimens, several As-substituted tetrahedrites are synthesized and characterized. It is shown that the TE properties are only weakly influenced by the substitution of As for Sb. Besides tetrahedrites, calcium manganese oxides and conductive polymers are also studied

Identiferoai:union.ndltd.org:theses.fr/2018LORR0175
Date11 October 2018
CreatorsLevinský, Petr
ContributorsUniversité de Lorraine, České vysoké učení technické (Prague), Dauscher, Anne, Hejtmánek, Jiří
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0028 seconds