• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermal and thermoelectric measurements of silicon nanoconstrictions, supported graphene, and indium antimonide nanowires

Seol, Jae Hun 04 October 2012 (has links)
This dissertation presents thermal and thermoelectric measurements of nanostructures. Because the characteristic size of these nanostructures is comparable to and even smaller than the mean free paths or wavelengths of electrons and phonons, the classical constitutive laws such as the Fourier’s law cannot be applied. Three types of nanostructures have been investigated, including nanoscale constrictions patterned in a sub-100 nm thick silicon film, monatomic thick graphene ribbons supported on a silicon dioxide (SiO₂) beam, and indium antimonide (InSb) nanowires. A suspended measurement device has been developed to measure the thermal resistance of 48-174 nm wide constrictions etched in 35-65 nm thick suspended silicon membranes. The measured thermal resistance is more than ten times larger than the diffusive thermal resistance calculated from the Fourier’s law. The discrepancy is attributed to the ballistic thermal resistance component as a result of the smaller constriction width than the phonon-phonon scattering mean free path. Because of diffuse phonon scattering by the side walls of the constriction with a finite length, the phonon transmission coefficient is 0.015 and 0.2 for two constrictions of 35 nm x 174 nm x220 nm and 65 nm x 48 nm x 50 nm size. Another suspended device has been developed for measuring the thermal conductivity of single-layer graphene ribbons supported on a suspended SiO₂ beam. The obtained room-temperature thermal conductivity of the supported graphene is about 600 W/m-K, which is about three times smaller than the basal plane values of high-quality pyrolytic graphite because of phonon-substrate scattering, but still considerably higher than for common thin film electronic materials. The measured thermal conductivity is in agreement with a theoretical result based on quantum mechanical calculation of the threephonon scattering processes in graphene, which finds a large contribution to the thermal conductivity from the flexural vibration modes. A device has been developed to measure the Seebeck coefficients (S) and electrical conductivities ([sigma]) of InSb nanowires grown by a vapor-liquid-solid process. The obtained Seebeck coefficient is considerably lower than the literature values for bulk InSb crystals. It was further found that decreasing the base pressure during the VLS growth results in an increase in the Seebeck coefficient and a decrease in the electrical conductivity, except for a nanowire with the smallest diameter of 15 nm. This trend is attributed to preferential oxidation of indium by residual oxygen in the growth environment, which could cause increased n-type Sb doping of the nanowires with increasing base pressure. The deviation in the smallest diameter nanowire from this trend indicates a large contribution from the surface charge states in the nanowire. The results suggest that better control of the chemical composition and surface states is required for improving the power factor of InSb nanowires. On approach is to use Indium-rich source materials for the growth to compensate for the loss of indium due to oxidation by residual oxygen. / text
2

Synthesis, Characterization and Optimization of New Thermoelectric Materials / Synthèse, caractérisation et optimisation de nouveaux matériaux thermoélectriques

Levinský, Petr 11 October 2018 (has links)
Les matériaux thermoélectriques (TE) permettent de convertir directement de la chaleur en électricité et vice-versa. Les objectifs de cette thèse étaient de tenter d'améliorer les performances TE de trois familles de matériaux et de mieux comprendre le lien entre les propriétés physiques (électriques, thermiques, magnétiques) généralement mesurées dans une large gamme de température (5–700 K) et les microstructures/compositions chimiques observées. Généralement, les matériaux ont été synthétisés par des techniques de métallurgie des poudres et densifiés par spark plasma sintering. La majeure partie de nos travaux a concerné la famille des matériaux tétraédrites, dérivés du minéral naturel (Cu,Ag)10(Zn,Fe)2(Sb,As)4S13, présentant des propriétés TE prometteuses, récemment mises en évidence. D’abord, les propriétés TE de huit tétraédrites naturelles de provenance différente ont été étudiées. Nous avons montré que leurs propriétés physiques sont plutôt prévisibles selon leur composition chimique et finalement peu différentes selon leur origine. Les propriétés TE de mélanges de tétraédrites naturelles et synthétiques obtenus par broyage mécanique ont ensuite été déterminées. Ce procédé fortement énergétique produit des particules de taille nanométrique des deux phases qui forment une solution solide pendant le frittage. Par contre, un broyage manuel conserve la présence des deux phases, ce qui conduit à de plus faibles performances TE. Ensuite, nous avons montré que la substitution Sb <-> As, usuelle dans les spécimens naturels, n’influence que faiblement les propriétés TE. Enfin, les propriétés TE de manganites de calcium et de polymères conducteurs ont également été étudiées / Thermoelectric (TE) materials allow direct conversion between heat and electricity. The aim of this thesis was to try to improve the thermoelectric performance of three different families of materials and to better understand the link between the various physical properties (electrical, thermal, magnetic) generally measured in a broad temperature range (5–700 K) and the observed microstructure/chemical composition. In general, the materials were synthesized by powder metallurgy techniques and densified by spark plasma sintering (SPS). The major part of our studies concerns the tetrahedrite family of materials, derived from the mineral tetrahedrite, (Cu,Ag)10(Zn,Fe)2(Sb,As)4S13, whose promising thermoelectric properties were only recently discovered. In a first approach, the TE properties of eight natural tetrahedrites of different geographic origin are studied. It is shown that they all behave rather predictably and uniformly. Next, the properties of ball milled mixtures of natural and synthetic tetrahedrites are investigated. This high-energy process yields nanoscale particles of the two phases, which form a solid solution during the sintering. Low-energy hand grinding preserves the two-phase nature and results in inferior TE performance. Because arsenic is a common substituent in natural specimens, several As-substituted tetrahedrites are synthesized and characterized. It is shown that the TE properties are only weakly influenced by the substitution of As for Sb. Besides tetrahedrites, calcium manganese oxides and conductive polymers are also studied

Page generated in 0.0964 seconds