Les écoulements volcaniques (lahars, écoulements hyperconcentrés) et les crues soudaines représentent des phénomènes destructeurs et dangereux. Malgré leur pouvoir destructeur (e.g. Armero, Colombie, 1985), il existe très peu d’études centrées sur les effets des lahars en zone urbaine, alors qu’ils représentent une menace réelle pour de nombreuses villes, comme Arequipa, au Pérou. Arequipa est une ville de presque 1 million d’habitants située à 17 km au sud-est du volcan El Misti. La dernière éruption majeure du Misti remonte à 550 ans (1460 après J.C.) et de plus petites éruptions ont parsemé le 18ème et le 19ème siècle. Des lahars dont les volumes sont compris entre 0,01x106 et 11x106 m3 se sont formés et des inondations ont balayé les vallées tous les 5 à 10 ans. Suite à l’augmentation de la population d’Arequipa, la zone urbanisée s’étend maintenant sur les flancs du volcan, jusqu’à 9 km du sommet. En réponse à cette croissance rapide et apparemment incontrôlée, il est essentiel d’évaluer l’utilisation des sols, les bâtiments et les infrastructures en fonction de leur vulnérabilité. Des scénarios d’aléas ont été développés à partir d’anciennes et d’actuelles études géologiques, de cartes traditionnelles et des modèles numériques (tels que Titan2D) des dépôts volcaniques et fluviaux, d’études de terrain sur l’utilisation des sols, le type de bâtiments et d’infrastructures, d’analyses statistiques (y compris des analyses multi variantes) et enfin des caractéristiques géotechniques des matériaux utilisés pour les constructions. Trois scénarios de référence ont été utilisés allant d’un scénario de crue (récurrence de 5 à 10 ans) à une éruption (sub) Plinienne (VEI >3, récurrence de 5000 à 20 000 ans). Les zones inondables ont été délimitées en utilisant des résultats de code de simulation couplés à des cartographies géologiques et à des analyses de magnitude/fréquence. L'amélioration d'un MNT, construit à partir d’études DGPS et de données ASTER (10 m de résolution), a permis de modéliser les écoulements à partir de Titan2D. Les résultats du modèle montrent une extension des écoulements plus longue que celles proposées dans les études précédentes (e.g Vargas et al, 2010). L’étude de terrain a permis de classifier l’utilisation des sols selon 19 catégories et les principaux bâtiments et infrastructures selon 10 catégories. Par exemple, les bâtiments ont été classés et ordonnés selon des critères de nature du matériau principal les constituant, nombre d’étages, etc. De la même manière, la classification de l’utilisation des sols et du type d’infrastructures ont été classé en fonction de différents éléments comme le taux d’occupation, l’importance des évacuations d’urgence etc. Les effets mécaniques des écoulements sur les immeubles et les infrastructures ont été recherchés dans le but d’élaborer des fonctions de vulnérabilité. Cette étude a révélé que les bâtiments et l’utilisation des sols du Quebrada Huarangal sont particulièrement vulnérables et exposés au risque même lors d’un écoulement de faible magnitude. Ceci est essentiellement dû à la très faible qualité des constructions dans les zones à hauts risques du Quebrada Huarangal. Au contraire, le risque présent dans la vallée du Rio Chili est une zone à faible risque. Le niveau de risque inhérent au système d’énergie hydroélectrique et aux réserves d’eau potable reste inquiétant pour la ville, notamment durant une crise volcanique. Cette étude a mis en évidence les capacités d’intégration des données SIG générant de l’information sur le risque via la combinaison de scénarios d’aléas et d’éléments de vulnérabilité. Ces méthodes semblent être prometteuses pour l’étude et la prévention des risques volcaniques. De plus, une base de données mise à jour pourrait aider à gérer de manière efficace une possible crise volcanique en temps réel, et ce qui est plus important encore, assister les tâches de réduction des risques. / Volcanic mass flows (lahars, hyperconcentrated flows) and flash floods represent destructive and dangerous phenomena. Given evidence concerning the destructive nature of lahars (e.g. Armero, Colombia, 1985) there appears to be a lack of studies into the effect of lahars in dense urban environments ; a very real threat for many cities worldwide including the Arequipa, Peru. Arequipa, with nearly 1 million inhabitants, is located 17 km SW of El Misti Volcano. El Misti's last major eruption occurred 550 years ago (1460AD), with smaller eruptions occurring in the 18 and 19th Centuries. Lahars with volumes ranging from 0.01x106 m3 to 11x106 m3 have occurred, and flash floods have swept down valleys every 5 to 10 years. Population growth has resulted in urban sprawl to within 9 km of El Misti’s summit. It is this rapid and seemingly uncontrolled expansion which warrants the assessment of building, land use and infrastructure within a vulnerability framework. Hazard scenarios were developed from former and current geological studies ; conventional and computer-aided (e.g. Titan2D numerical modelling) mapping of volcaniclastic and fluvial deposits ; field surveys of land use, buildings and infrastructure ; statistical analysis (including multivariate analysis) ; and geotechnical characteristics of building materials. Three reference scenarios were used from a flash flood scenario (recurrence interval of 5 to 10 years) to a (sub)Plinian eruption (VEI >3, recurrence interval of 5000 to 20,000 years). Inundation zones were defined using simulation code results coupled with geological mapping and magnitude/frequency analysis. The results of Titan2D modelling feature a longer flow runout than in previous studies (e.g. Vargas et al., 2010) due to the creation of an enhanced 10 m DEM, constructed from DGPS surveys and ASTER data. Land-use, building and infrastructure surveys identified nineteen different land-use patterns, ten main building types and many key infrastructures. Building types were classified and ranked according to a number of components, such as the dominant building material, number of floors etc. Similarly land use and infrastructure were ranked according to a number of different elements such as occupancy rate, emergency importance etc. The mechanical effects of the flows on buildings and infrastructure were then investigated to elaborate vulnerability functions. The vulnerability and risk assessment have indicated that building, land use and infrastructure on the Quebrada Huarangal fan are particularly vulnerable and at risk even during the smallest magnitude flow. This is primarily due to very poor quality construction in high hazard areas on the Quebrada Huarangal fan. In contrast the risk posed in the Río Chili Valley is in general much less. The level of risk posed to the hydroelectric power scheme and the potable water supply is concern for the city, especially during a volcanic crisis. Data integration abilities of GIS in generating risk information by combining hazard scenarios with vulnerability elements have been highlighted in this research and offer promising prospects in the field of volcanic risk assessment and management. In addition, an updated database could help to efficiently handle possible volcanic crisis in real-time, and more importantly assist the risk reduction tasks.
Identifer | oai:union.ndltd.org:theses.fr/2011CLF22157 |
Date | 15 September 2011 |
Creators | Martelli, Kim |
Contributors | Clermont-Ferrand 2, Thouret, Jean-Claude |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.003 seconds