Cette thèse se découpe en trois parties. Les deux premières portent sur le développement de méthodes pour la construction de modèles géométriques moyens et pour la comparaison de modèles. Plusieurs problématiques sont abordées, telles que la construction d'une cornée moyenne et la comparaison de cornées. Il existe à ce jour peu d'études ayant ces objectifs car la mise en correspondance de surfaces cornéennes est une problématique non triviale. En plus d'aider à développer la connaissance de l'anatomie cornéenne, la modélisation de la cornée normale permet de détecter tout écart significatif par rapport à la normale permettant un diagnostic précoce de pathologies. La seconde partie a pour objectif de développer une méthode pour reconnaître une surface parmi un groupe de surfaces à l’aide de leurs acquisitions pour une application de biométrie. L’idée est de quantifier la différence entre chaque surface et une surface donnée, et de déterminer un seuil permettant la reconnaissance. Deux méthodes sont proposées et une méthodologie en cascade utilisant ces deux méthodes afin de combiner les avantages de chacune est aussi proposée. La troisième et dernière partie porte sur une nouvelle méthode de décomposition en graphes de maillages 3D triangulés. Nous utilisons des cartes de courbures discrètes comme descripteur de forme afin de découper le maillage en différentes catégorie de carreaux. Ensuite un graphe d'adjacence est construit avec un nœud pour chaque carreau. Ces graphes sont utilisés pour extraire des caractéristiques géométriques décrites par des motifs (ou patterns), ce qui permet de détecter des régions spécifiques dans un modèle 3D, ou des motifs récurrents. / This thesis comprises three parts. The first two parts concern the development of methods for the construction of mean geometric models and for model comparison. Several issues are addressed, such as the construction of an average cornea and the comparison of corneas. Currently, there are few studies with these objectives because the matching of corneal surfaces is a non-trivial problem. In addition to help to develop a better understanding of the corneal anatomy, 3D models of normal corneas can be used to detect any significant deviation from the norm, thereby allowing for an early diagnosis of diseases or abnormalities using the shape of the cornea. The second part of this thesis aims to develop a method for recognizing a surface from a group of surfaces using their 3D acquisitions in a biometric application pertinent to the cornea. The concept behind this method is to quantify the difference between each surface and a given surface and to determine the threshold for recognition. Two complementary methods are proposed. A cascading methodology using both methods to combine the advantages of each method is also proposed. The third and final part of this thesis focuses on a new method for decomposing 3D triangulated meshes into graphs. We use discrete curvature maps as the shape descriptor to split the mesh in eight different categories. Next, an adjacency graph is built with a node for each patch. These graphs are used to extract geometric characteristics described by patterns that allow for the detection of specific regions in a 3D model or recurrent characteristics.
Identifer | oai:union.ndltd.org:theses.fr/2015AIXM4084 |
Date | 03 December 2015 |
Creators | Polette, Arnaud |
Contributors | Aix-Marseille, Université de Montréal. Faculté des sciences, Mari, Jean-Luc, Meunier, Jean |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French, English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds