Ces dernières années, les progrès réalisés dans le contrôle de l'interaction lumière-matière au niveau quantique ont conduit à de nombreuses avancées en optique quantique, en particulier dans l'étude de phénomènes quantiques fondamentaux, dans la conception de systèmes quantiques artificiels et dans les applications en information quantique. Il a notamment été possible d'augmenter considérablement l'intensité de l'interaction lumière-matière et de contrôler le couplage de systèmes quantiques à leur environnement, afin d'obtenir des états non conventionnels et fortement non classiques. Cependant, pour exploiter ces états quantiques en vue d'applications technologiques, il est crucial de pouvoir mesurer et contrôler ces systèmes avec précision. Dans ce contexte, ce travail de thèse est consacré à l'étude de nouveaux protocoles pour la mesure et le contrôle de systèmes quantiques dans lesquels des fortes interactions et des symétries particuliers conduisent à la génération d'états fortement non classiques. Nous nous intéressons dans un premier temps au régime de couplage ultra-fort de l'électrodynamique quantique en cavité (et de circuit). Plus précisément, l'état de fondamental n'est plus le vide standard, car il devient énergiquement favorable qu'il contienne des photons.Dans ce régime on peut même obtenir des chat de Schrödinger comme état fondamental.En revanche, pour assurer la conservation de l'énergie, les photons contenus dans ce vide exotique sont liés à la cavité et ne peuvent pas s'échapper dans l'environnement. Cela signifie qu'ils ne peuvent être mesurés par simple photodétection. Nous proposons dans ce travail un protocole spécialement conçu pour surmonter cette difficulté. Nous montrons qu'il est possible de déduire les propriétés photoniques de l'état fondamental à partir du déplacement de Lamb d'un système à deux niveaux auxiliaire.Les résonateurs optiques à paires de photons constituent une autre classe de systèmes dans lesquels la symétrie de parité conduit à des états quantiques non conventionnels. Grâce à "l'ingénierie de réservoir", il est aujourd'hui possible de contrôler l'interaction d'un système avec son environnement, de façon à le stabiliser dans des états quantiques particulièrement intéressants. En particulier, quand un résonateur (une cavité optique) est couplé à l'environnement par échange de paires de photons, il est possible de créer de chats de Schrödinger optiques dans la dynamique transitoire du système. Les corrélations quantiques de ces états sont par contre rapidement perdues en raison de la présence inévitable de dissipation à un photon. Protéger le système contre cette perturbation est le but du protocole de feedback basé sur la parité que nous présentons dans cette thèse / In recent years, the field of quantum optics has thrived thanks to the possibility of controlling light-matter interaction at the quantum level.This is relevant for the study of fundamental quantum phenomena, the generation of artificial quantum systems, and for quantum information applications.In particular, it has been possible to considerably increase the intensity of light-matter interaction and to shape the coupling of quantum systems to the environment, so to realise unconventional and highly nonclassical states.However, in order to exploit these quantum states for technological applications, the question of how to measure and control these systems is crucial.Our work is focused on proposing and exploring new protocols for the measurement and the control of quantum systems, in which strong interactions and peculiar symmetries lead to the generation of highly nonclassical states.The first situation that we consider is the ultrastrong coupling regime in cavity (circuit) quantum electrodynamics.In this regime, it becomes energetically favourable to have photons and atomic excitations in the ground state, that is no more represented by the standard vacuum.In particular, in case of parity symmetry, the ground state is given by a light-matter Schrödinger cat state.However, according to energy conservation, the photons contained in these exotic vacua are bound to the cavity, and cannot be emitted into the environment.This means that we can not explore and control them by simple photodetection.In our work we propose a protocol that is especially designed to overcome this issue.We show that we can infer the photonic properties of the ground state from the Lamb shift of an ancillary two-level system.Another class of systems in which the fundamental parity symmetry leads to very unconventional quantum states is given by two-photon driven-dissipative resonators.Thanks to the reservoir engineering, it is today possible to shape the interaction with the environment to stabilize the system in particularly interesting quantum states.When a resonator (an optical cavity) exchanges with the environment by pairs of photons, it has been possible to observe the presence of optical Schrödinger cat states in the transient dynamics of the system.However, the quantum correlations of these states quickly decays due to the unavoidable presence of one-photon dissipation.Protecting the system against this perturbation is the goal of the parity triggered feedback protocol that we present in this thesis
Identifer | oai:union.ndltd.org:theses.fr/2017USPCC223 |
Date | 10 November 2017 |
Creators | Lolli, Jared |
Contributors | Sorbonne Paris Cité, Ciuti, Cristiano |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image |
Page generated in 0.0186 seconds