Spelling suggestions: "subject:"couplage ultrafiltra"" "subject:"couplage ultrafiltrate""
1 |
Non-linéarité et couplages lumière-matière en électrodynamique quantique en circuitBourassa, Jérôme January 2012 (has links)
L'électrodynamique quantique en circuit est un contexte unique pour l'optique quantique et le calcul quantique. Dans cette architecture où des qubits supraconducteurs, composés de jonctions Josephson, sont fortement couplés au champ électromagnétique de résonateurs coplanaires, la dynamique du système est semblable à celle des atomes dans des cavités optiques. La polyvalence de la conception des circuits supraconducteurs permet d'étudier l'interaction lumière-matière de différents régimes et manières. Ainsi, plusieurs qubits peuvent être couplés à un seul résonateur afin de les enchevêtrer. Une jonction Josephson peut également être intégrée directement au résonateur afin de produire une interaction non linéaire entre les photons. De la même manière, il a été suggéré que le couplage qubit-résonateur pourrait devenir l'échelle d'énergie dominante du système : le régime de couplage ultrafort. Malgré que la dynamique qubit-résonateur soit bien comprise, les modèles actuels ne permettent pas de prédire correctement les effets dispersifs du résonateur sur les qubits tels : le décalage de Lamb, l'interaction d'échange virtuelle et le temps de relaxation. Comme il n'y a pas non plus de modèle général permettant de déterminer les caractéristiques d'un résonateur non linéaire, on comprend mal comment rendre la non-linéarité plus forte, ni même si le régime de couplage ultrafort peut être physiquement réalisé dans ces circuits. Dans le cadre de ma thèse, je me suis intéressé à la modélisation de qubits et de résonateurs afin de mieux comprendre l'interaction lumière-matière en circuits, dans le but de développer des conceptions alternatives d'architectures plus performantes ou qui explorent des régimes d'interactions méconnus. Pour ce faire, j'ai développé une méthode analytique générale permettant de trouver l'hamiltonien exact de circuits distribués non linéaires, une méthode basée sur la mécanique lagrangienne et la représentation des modes propres d'oscillation. La grande qualité de la méthode réside dans la description analytique détaillée des paramètres de l'hamiltonien du système en fonction de la géométrie et des caractéristiques électromagnétiques du circuit. Non seulement le formalisme développé réconcilie le modèle quantique avec l'électromagnétisme classique et la théorie des circuits, mais va bien au-delà en formulant d'importantes prédictions sur la nature des interactions et l'influence des fluctuations du vide du résonateur sur la dynamique des qubits supraconducteurs. À l'aide d'exemples numériques réalistes et compatibles avec les technologies actuelles, je montre comment de simples optimisations de conception permettraient d'augmenter grandement l'efficacité et la rapidité d'exécution de calculs quantiques avec l'architecture, en plus d'atteindre des régimes de non-linéarité et de couplage lumière-matière inédits. En permettant de mieux comprendre l'interaction lumière-matière dans les circuits et d'optimiser l'architecture afin d'atteindre de nouveaux régimes de couplages, la méthode d'analyse de circuit développée dans cette thèse permettra de tester et raffiner nos connaissances sur l'électrodynamique quantique et la physique quantique.
|
2 |
ELECTRODYNAMIQUE QUANTIQUE DE CIRCUIT EN REGIME DE COUPLAGE ULTRAFORTNataf, Pierre 16 December 2011 (has links) (PDF)
En Electrodynamique Quantique en Cavité (" Cavity QED "), l'interaction entre la transition atomique et le champ de la cavité est quantifiée par la fréquence de Rabi du vide. L'expression analogue " circuit QED " a été introduite pour certains circuits supraconducteurs contenant des Jonctions Josephson, parce qu'ils pouvaient se comporter comme des atomes artificiels couplés au mode bosonique du résonateur. Dans le régime où la fréquence de Rabi du vide est comparable à la fréquence de transition du système à deux niveaux, des transitions de phases quantiques superradiantes ont été prédites pour le fondamental du système, par exemple dans le cadre du modèle de Dicke. Des réalisations possibles du modèle de Dicke par des systèmes de circuit QED sont étudiées ici théoriquement dans les cas de couplage capacitif ou inductif. Prédictions et contraintes sont analysées pour l'obtention d'une transition de phase quantique, avec un vide deux fois dégénéré au-dessus d'un point critique quantique. La robustesse et la protection de la dégénérescence du vide dans le régime de couplage ultrafort sont étudiées, et conduisent à de possibles applications en Information Quantique avec des réseaux de plusieurs résonateurs. Finalement, un modèle de Dicke généralisé avec une phase doublement superradiante et un vide quatre fois dégénéré est proposé.
|
3 |
Applications of the Josephson mixer : ultrastrong coupling, quantum node and injection locking in conversion / Applications du mixeur Josephson : couplage ultrafort, nœud quantique et verrouillage par injection en conversionMarković, Danijela 14 December 2017 (has links)
Les circuits supraconducteurs sont parmi les technologies de l'information quantique les plus avancées. Ils ont aujourd'hui atteint la maturité qui offre un grand degré de contrôle et une large gamme d'interactions qui peuvent être précisément réalisées sur mesure. Le mixeur Josephson est un exemple de circuit supraconducteur qui effectue le mixage à trois ondes aux fréquences micro-ondes. Dans cette thèse, trois expériences, où le mixeur Josephson est utilisé pour trois applications différentes sont décrites. D'abord, nous avons réalisé le couplage ultrafort effectif entre deux modes bosoniques afin d'étudier les propriétés de l'état fondamental de ce système, tels que le squeezing à un mode et à deux modes du champ radié. Ensuite, nous avons construit un nœud quantique, capable de créer et distribuer de l'intrication sur un réseau quantique micro-onde, alors que de stocker et relâcher de l'information quantique à demande. Nous avons intégré un qubit de mesure dans ce dispositif pour augmenter le degré de contrôle sur son état quantique. Finalement, nous avons poussé le mixeur Josephson au delà du seuil de l'oscillation paramétrique, où nous avons démontré une technique inhabituelle de verrouillage par injection en conversion de fréquence dans ce dispositif non-dégénéré. / Superconducting circuits stand among the most advanced quantum information processing platforms. They have nowadays reached a maturity that offers a high level of controllability and a large variety of interactions that can be precisely designed on demand. The Josephson mixer is one such superconducting device that performs three-wave mixing at microwave frequencies. In this thesis, we describe three experiments in which the Josephson mixer was used for different applications. First, we have realized an effective ultrastrong coupling of two bosonic modes that allowed us to study the ground state properties of this system, such as the single mode and the two mode squeezing of the emitted radiation. Second, we have built a quantum node, able to generate and distribute entanglement over a microwave quantum network, as well as to store and release quantum information on demand. We have integrated an ancilla qubit to this device in order to increase the degree of control over the quantum state of the system. Finally, we have pushed the Josephson mixer beyond the parametric oscillation instability threshold, where we have demonstrated an atypical injection locking technique that relies on coherent frequency conversion in this non-degenerate device.
|
4 |
Quantum Measurement and Feedback Control of highly nonclassical Photonic States / Mesure et Feedback quantique pour états Photonique fortement non classiqueLolli, Jared 10 November 2017 (has links)
Ces dernières années, les progrès réalisés dans le contrôle de l'interaction lumière-matière au niveau quantique ont conduit à de nombreuses avancées en optique quantique, en particulier dans l'étude de phénomènes quantiques fondamentaux, dans la conception de systèmes quantiques artificiels et dans les applications en information quantique. Il a notamment été possible d'augmenter considérablement l'intensité de l'interaction lumière-matière et de contrôler le couplage de systèmes quantiques à leur environnement, afin d'obtenir des états non conventionnels et fortement non classiques. Cependant, pour exploiter ces états quantiques en vue d'applications technologiques, il est crucial de pouvoir mesurer et contrôler ces systèmes avec précision. Dans ce contexte, ce travail de thèse est consacré à l'étude de nouveaux protocoles pour la mesure et le contrôle de systèmes quantiques dans lesquels des fortes interactions et des symétries particuliers conduisent à la génération d'états fortement non classiques. Nous nous intéressons dans un premier temps au régime de couplage ultra-fort de l'électrodynamique quantique en cavité (et de circuit). Plus précisément, l'état de fondamental n'est plus le vide standard, car il devient énergiquement favorable qu'il contienne des photons.Dans ce régime on peut même obtenir des chat de Schrödinger comme état fondamental.En revanche, pour assurer la conservation de l'énergie, les photons contenus dans ce vide exotique sont liés à la cavité et ne peuvent pas s'échapper dans l'environnement. Cela signifie qu'ils ne peuvent être mesurés par simple photodétection. Nous proposons dans ce travail un protocole spécialement conçu pour surmonter cette difficulté. Nous montrons qu'il est possible de déduire les propriétés photoniques de l'état fondamental à partir du déplacement de Lamb d'un système à deux niveaux auxiliaire.Les résonateurs optiques à paires de photons constituent une autre classe de systèmes dans lesquels la symétrie de parité conduit à des états quantiques non conventionnels. Grâce à "l'ingénierie de réservoir", il est aujourd'hui possible de contrôler l'interaction d'un système avec son environnement, de façon à le stabiliser dans des états quantiques particulièrement intéressants. En particulier, quand un résonateur (une cavité optique) est couplé à l'environnement par échange de paires de photons, il est possible de créer de chats de Schrödinger optiques dans la dynamique transitoire du système. Les corrélations quantiques de ces états sont par contre rapidement perdues en raison de la présence inévitable de dissipation à un photon. Protéger le système contre cette perturbation est le but du protocole de feedback basé sur la parité que nous présentons dans cette thèse / In recent years, the field of quantum optics has thrived thanks to the possibility of controlling light-matter interaction at the quantum level.This is relevant for the study of fundamental quantum phenomena, the generation of artificial quantum systems, and for quantum information applications.In particular, it has been possible to considerably increase the intensity of light-matter interaction and to shape the coupling of quantum systems to the environment, so to realise unconventional and highly nonclassical states.However, in order to exploit these quantum states for technological applications, the question of how to measure and control these systems is crucial.Our work is focused on proposing and exploring new protocols for the measurement and the control of quantum systems, in which strong interactions and peculiar symmetries lead to the generation of highly nonclassical states.The first situation that we consider is the ultrastrong coupling regime in cavity (circuit) quantum electrodynamics.In this regime, it becomes energetically favourable to have photons and atomic excitations in the ground state, that is no more represented by the standard vacuum.In particular, in case of parity symmetry, the ground state is given by a light-matter Schrödinger cat state.However, according to energy conservation, the photons contained in these exotic vacua are bound to the cavity, and cannot be emitted into the environment.This means that we can not explore and control them by simple photodetection.In our work we propose a protocol that is especially designed to overcome this issue.We show that we can infer the photonic properties of the ground state from the Lamb shift of an ancillary two-level system.Another class of systems in which the fundamental parity symmetry leads to very unconventional quantum states is given by two-photon driven-dissipative resonators.Thanks to the reservoir engineering, it is today possible to shape the interaction with the environment to stabilize the system in particularly interesting quantum states.When a resonator (an optical cavity) exchanges with the environment by pairs of photons, it has been possible to observe the presence of optical Schrödinger cat states in the transient dynamics of the system.However, the quantum correlations of these states quickly decays due to the unavoidable presence of one-photon dissipation.Protecting the system against this perturbation is the goal of the parity triggered feedback protocol that we present in this thesis
|
5 |
The ultrastrong coupling regime as a resource for the generation of nonclassical states of light / Le couplage ultrafort, une ressource pour la génération d'états non-classiques de la lumièreFedortchenko, Sergueï 28 September 2017 (has links)
Depuis l’avènement de la mécanique quantique, l’étude des interactions lumière-matière à l’échelle quantique s’est énormément développée en tant que domaine de recherche. Par exemple, grâce à des prédictions théoriques surprenantes, des interactions d’une force sans précédant ont été démontrées entre de la matière et des radiations terahertz et microonde. Ces résultats correspondent à un régime dit de couplage ultrafort, atteint lorsque l’énergie d’interaction devient comparable aux énergies propres de la lumière et de la matière lorsque celles-ci n’interagissent pas. Dans ce régime, des propriétés intrigantes peuvent subsister telles que la présence de photons même lors qu’aucune énergie n’est fournie au système. Cependant, ces photons ne peuvent, a priori, être émis du système vers l’extérieur de manière à pouvoir être mesurés et par conséquent démontrer ces propriétés.Dans cette thèse, nous avons étudié ces propriétés intrigantes et proposé plusieurs moyens permettant d’y accéder expérimentalement. Nous nous sommes appuyés sur plusieurs plate-formes physiques qui sont de bon candidats pour ces études, et pour chacun de ces systèmes nous avons mis au point un modèle mettant en évidence ces propriétés d’une manière ou d’une autre. De cette façon, nous avons exploré le lien entre le régime de couplage ultrafort et la génération d’états non-classiques de la lumière. En outre, dans une étude plus ouverte nous avons montré que les interactions lumière- matière dans l’une de ces plate-formes peuvent être utilisés pour concevoir des protocols de communication quantique. En plus de montrer un intérêt fondamental, nos résultats s’inscrivent dans une optique de développement d’applications pour les technologies quantiques en utilisant différents systèmes expérimentaux disponibles actuellement / Since the advent of quantum mechanics, the study of light-matter interactions at thequantum level has been greatly developed as a research field. For instance, surprisingtheoretical predictions gave rise to experiments with unprecedented interactionstrengths between matter, and terahertz and microwave radiations. These results correspondto the so-called ultrastrong coupling regime, that is reached when the interactionenergy becomes comparable to the typical energies of the light and matter when they arenot interacting. In this regime, intriguing properties can be found such as the presenceof photons even when no energy is given to the system. However, these photons cannot,a priori, be emitted from the system to the outside world in order to be measured andtherefore demonstrate these properties. In this thesis, we studied these intriguing properties and proposed several means toaccess them experimentally. We relied on several physical platforms which are goodcandidates for such studies, and for each one of these systems we devised a model thatcan evidence these properties one way or another. By doing so, we explored the linkbetween the ultrastrong coupling regime and the generation of nonclassical states oflight. Additionally, as an outlook we showed that the light-matter interactions in oneof these platforms could be used to design quantum communication protocols. On topof showing fundamental interest, our results fit in the line of developing applications forquantum technologies using different experimentally available systems.
|
Page generated in 0.0709 seconds