• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mesure et rétroaction sur un qubit multi-niveaux en électrodynamique quantique en circuit non linéaire

Boissonneault, Maxime January 2011 (has links)
L'électrodynamique quantique en circuit est une architecture prometteuse pour le calcul quantique ainsi que pour étudier l'optique quantique. Dans cette architecture, on couple un ou plusieurs qubits supraconducteurs jouant le rôle d'atomes à un ou plusieurs résonateurs jouant le rôle de cavités optiques. Dans cette thèse, j'étudie l'interaction entre un seul qubit supraconducteur et un seul résonateur, en permettant cependant au qubit d'avoir plus de deux niveaux et au résonateur d'avoir une non-linéarité Kerr. Je m'intéresse particulièrement à la lecture de l'état du qubit et à son amélioration, à la rétroaction du processus de mesure sur le qubit de même qu'à l'étude des propriétés quantiques du résonateur à l'aide du qubit. J'utilise pour ce faire un modèle analytique réduit que je développe à partir de la description complète du système en utilisant principalement des transformations unitaires et une élimination adiabatique. J'utilise aussi une librairie de calcul numérique maison permettant de simuler efficacement l'évolution du système complet. Je compare les prédictions du modèle analytique réduit et les résultats de simulations numériques à des résultats expérimentaux obtenus par l'équipe de quantronique du CEASaclay. Ces résultats sont ceux d'une spectroscopie d'un qubit supraconducteur couplé à un résonateur non linéaire excité. Dans un régime de faible puissance de spectroscopie le modèle réduit prédit correctement la position et la largeur de la raie. La position de la raie subit les décalages de Lamb et de Stark, et sa largeur est dominée par un déphasage induit par le processus de mesure. Je montre que, pour les paramètres typiques de l'électrodynamique quantique en circuit, un accord quantitatif requiert un modèle en réponse non linéaire du champ intra-résonateur, tel que celui développé. Dans un régime de forte puissance de spectroscopie, des bandes latérales apparaissent et sont causées par les fluctuations quantiques du champ électromagnétique intra-résonateur autour de sa valeur d'équilibre. Ces fluctuations sont causées par la compression du champ électromagnétique due à la non-linéarité du résonateur, et l'observation de leur effet via la spectroscopie d'un qubit constitue une première. Suite aux succès quantitatifs du modèle réduit, je montre que deux régimes de paramètres améliorent marginalement la mesure dispersive d'un qubit avec un résonateur linéaire, et significativement une mesure par bifurcation avec un résonateur non linéaire. J'explique le fonctionnement d'une mesure de qubit dans un résonateur linéaire développée par une équipe expérimentale de l'Université de Yale. Cette mesure, qui utilise les non-linéarités induites par le qubit, a une haute fidélité, mais utilise une très haute puissance et est destructrice. Dans tous ces cas, la structure multi-niveaux du qubit s'avère cruciale pour la mesure. En suggérant des façons d'améliorer la mesure de qubits supraconducteurs, et en décrivant quantitativement la physique d'un système à plusieurs niveaux couplé à un résonateur non linéaire excité, les résultats présentés dans cette thèse sont pertinents autant pour l'utilisation de l'architecture d'électrodynamique quantique en circuit pour l'informatique quantique que pour l'optique quantique.
2

Non-linéarité et couplages lumière-matière en électrodynamique quantique en circuit

Bourassa, Jérôme January 2012 (has links)
L'électrodynamique quantique en circuit est un contexte unique pour l'optique quantique et le calcul quantique. Dans cette architecture où des qubits supraconducteurs, composés de jonctions Josephson, sont fortement couplés au champ électromagnétique de résonateurs coplanaires, la dynamique du système est semblable à celle des atomes dans des cavités optiques. La polyvalence de la conception des circuits supraconducteurs permet d'étudier l'interaction lumière-matière de différents régimes et manières. Ainsi, plusieurs qubits peuvent être couplés à un seul résonateur afin de les enchevêtrer. Une jonction Josephson peut également être intégrée directement au résonateur afin de produire une interaction non linéaire entre les photons. De la même manière, il a été suggéré que le couplage qubit-résonateur pourrait devenir l'échelle d'énergie dominante du système : le régime de couplage ultrafort. Malgré que la dynamique qubit-résonateur soit bien comprise, les modèles actuels ne permettent pas de prédire correctement les effets dispersifs du résonateur sur les qubits tels : le décalage de Lamb, l'interaction d'échange virtuelle et le temps de relaxation. Comme il n'y a pas non plus de modèle général permettant de déterminer les caractéristiques d'un résonateur non linéaire, on comprend mal comment rendre la non-linéarité plus forte, ni même si le régime de couplage ultrafort peut être physiquement réalisé dans ces circuits. Dans le cadre de ma thèse, je me suis intéressé à la modélisation de qubits et de résonateurs afin de mieux comprendre l'interaction lumière-matière en circuits, dans le but de développer des conceptions alternatives d'architectures plus performantes ou qui explorent des régimes d'interactions méconnus. Pour ce faire, j'ai développé une méthode analytique générale permettant de trouver l'hamiltonien exact de circuits distribués non linéaires, une méthode basée sur la mécanique lagrangienne et la représentation des modes propres d'oscillation. La grande qualité de la méthode réside dans la description analytique détaillée des paramètres de l'hamiltonien du système en fonction de la géométrie et des caractéristiques électromagnétiques du circuit. Non seulement le formalisme développé réconcilie le modèle quantique avec l'électromagnétisme classique et la théorie des circuits, mais va bien au-delà en formulant d'importantes prédictions sur la nature des interactions et l'influence des fluctuations du vide du résonateur sur la dynamique des qubits supraconducteurs. À l'aide d'exemples numériques réalistes et compatibles avec les technologies actuelles, je montre comment de simples optimisations de conception permettraient d'augmenter grandement l'efficacité et la rapidité d'exécution de calculs quantiques avec l'architecture, en plus d'atteindre des régimes de non-linéarité et de couplage lumière-matière inédits. En permettant de mieux comprendre l'interaction lumière-matière dans les circuits et d'optimiser l'architecture afin d'atteindre de nouveaux régimes de couplages, la méthode d'analyse de circuit développée dans cette thèse permettra de tester et raffiner nos connaissances sur l'électrodynamique quantique et la physique quantique.
3

Dynamique quantique dans un dcSQUID : du qubit de phase à l'oscillateur quantique bidimensionnel

Lecocq, Florent 11 May 2011 (has links) (PDF)
Cette thèse porte sur la dynamique quantique dans un dcSQUID inductif. Ce dispositif est une boucle supraconductrice interrompue par deux jonctions Josephson. Sa dynamique est analogue à celle d'une particule massive évoluant dans un potentiel bidimensionnel. Dans la limite quantique, le dcSQUID se comporte comme un atome artificiel à deux degrés de liberté, contrôlé par le courant et le flux de polarisation. Dans la limite où l'inductance de la boucle est petite devant celle des jonctions, celles-ci sont fortement couplées. La dynamique du circuit est alors celle d'un oscillateur anharmonique quantique unidimensionnel. Dans la limite des deux premiers niveaux d'énergie, ce circuit est un qubit de phase. Jusqu'alors la décohérence dans ce circuit était dominée par le bruit en courant. Nous montrons, par des mesures de spectroscopie et d'oscillations cohérentes, que l'effet du bruit en courant s'annule à courant de polarisation nul, permettant une augmentation des temps de cohérence. Dans la limite où l'inductance de la boucle est grande devant celle des jonctions, la dynamique devient bidimensionnelle. Le circuit exhibe alors un spectre d'énergie riche qui peut être décrit comme celui de deux oscillateurs anharmoniques couplés, correspondant aux modes d'oscillations symétrique et antisymétrique des phases des deux jonctions. Nous mettons en évidence ce spectre par des mesures de spectroscopie et nous démontrons la manipulation cohérente des états quantiques de chaque mode. En particulier nous mettons en évidence un couplage non-linéaire entre les deux modes, dans une limite de couplage fort. Ce couplage nous permet alors d'observer des oscillations cohérentes entre les deux modes internes de cet atome artificiel. De plus, dans ce manuscrit, nous présentons une technique innovante de fabrication de jonctions métalliques par évaporations sous angles qui n'a pas recours à un pont de résine suspendu. Finalement nous proposons un modèle simple basé sur les effets de chauffage qui explique pour la première fois une anomalie récurrente observée dans les caractéristiques courant-tension des dcSQUID.
4

Dynamique quantique dans un dcSQUID : du qubit de phase à l'oscillateur quantique bidimensionnel / Quantum dynamics in a dcSQUID : from the phase qubit to the 2D quantum oscillator

Lecocq, Florent 11 May 2011 (has links)
Cette thèse porte sur la dynamique quantique dans un dcSQUID inductif. Ce dispositif est une boucle supraconductrice interrompue par deux jonctions Josephson. Sa dynamique est analogue à celle d'une particule massive évoluant dans un potentiel bidimensionnel. Dans la limite quantique, le dcSQUID se comporte comme un atome artificiel à deux degrés de liberté, contrôlé par le courant et le flux de polarisation. Dans la limite où l'inductance de la boucle est petite devant celle des jonctions, celles-ci sont fortement couplées. La dynamique du circuit est alors celle d'un oscillateur anharmonique quantique unidimensionnel. Dans la limite des deux premiers niveaux d'énergie, ce circuit est un qubit de phase. Jusqu'alors la décohérence dans ce circuit était dominée par le bruit en courant. Nous montrons, par des mesures de spectroscopie et d'oscillations cohérentes, que l'effet du bruit en courant s'annule à courant de polarisation nul, permettant une augmentation des temps de cohérence. Dans la limite où l'inductance de la boucle est grande devant celle des jonctions, la dynamique devient bidimensionnelle. Le circuit exhibe alors un spectre d'énergie riche qui peut être décrit comme celui de deux oscillateurs anharmoniques couplés, correspondant aux modes d'oscillations symétrique et antisymétrique des phases des deux jonctions. Nous mettons en évidence ce spectre par des mesures de spectroscopie et nous démontrons la manipulation cohérente des états quantiques de chaque mode. En particulier nous mettons en évidence un couplage non-linéaire entre les deux modes, dans une limite de couplage fort. Ce couplage nous permet alors d'observer des oscillations cohérentes entre les deux modes internes de cet atome artificiel. De plus, dans ce manuscrit, nous présentons une technique innovante de fabrication de jonctions métalliques par évaporations sous angles qui n'a pas recours à un pont de résine suspendu. Finalement nous proposons un modèle simple basé sur les effets de chauffage qui explique pour la première fois une anomalie récurrente observée dans les caractéristiques courant-tension des dcSQUID. / This thesis focuses on the quantum dynamics in inductive dcSQUID. This device is a superconducting loop interrupted by two Josephson junctions. Its dynamics can be described as a massive fictitious particle in a two dimensional potential. A dcSQUID behaves as an artificial atom with two degrees of freedom, controlled by current and flux bias. When the loop inductance is smaller than the Josephson inductance, the junctions are strongly coupled. The device is then described as a one dimensional quantum anharmonic oscillator. In the limit of the two lowest energy levels, a dcSQUID is a phase qubit. Until now decoherence was dominated by the current noise. We show by spectroscopic measurement and coherent oscillations measurement that the effect of the current noise vanishes at zero current bias, enabling longer coherence times. When the loop inductance is larger than the Josephson inductance, the dynamics becomes two dimensional. The device exhibits a rich energy spectrum which can be describe as the one of two coupled anharmonic oscillators, corresponding to symmetric and antisymmetric oscillations modes of the phases across each junctions. We present spectroscopic measurement of this spectrum. We demonstrate the coherent manipulation of the quantum states of each mode. We show evidence of non linear coupling between the modes, in the strong coupling regime. This coupling enables the measurement of coherent oscillations between the internal modes of this artificial atom. In addition we present a novel fabrication technique that allows metallic junction fabrication by angle evaporation without the use of suspended bridge of resist. We propose also a simple model based on heating effects that explain for the first time a frequent anomaly in the IV characteristic of dcSQUID.
5

Estimation d'état et de paramètres pour les systèmes quantiques ouverts / Estimation of state and parameters in open quantum systems

Six, Pierre 22 November 2016 (has links)
La communauté scientifique a réussi ces dernières années à bâtir des systèmes quantiques simples sur lesquels des séries de mesures sont acquises successivement le long de trajectoires quantiques et sans réinitialisation de l’état (opérateur densité) par l’expérimentateur.L’objet de cette thèse est d’adapter les méthodes de tomographie quantique (estimation d’état et de paramètres) à ce cadre pour prendre en compte la rétroaction de la mesure sur l’état, la décohérence et les imperfections expérimentales.Durant le processus de mesure, l’évolution de l’état quantique est alors gouvernée par un processus de Markov à états cachés (filtres quantiques de Belavkin). Pour des mesuresen temps continu, nous commençons par montrer comment discrétiser l’équation maîtresse stochastique tout en préservant la positivité et la trace de l’état quantique, et ainsi sera mener aux filtres quantiques en temps discret. Ensuite, nous développons, à partir de trajectoires de mesures en temps discret, des techniques d’estimation par maximum de vraisemblance pour l’état initial et les paramètres. Cette estimation est accompagnée de son intervalle de confiance. Lorsqu’elle concerne des valeurs de paramètres (tomographie de processus quantique), nous donnons un résultat de robustesse grâce au formalisme des filtres particulaires et nous proposons une méthode de maximisation fondée sur le calcul du gradient par l’adjoint et bien adaptée au cas multiparamétrique. Lorsque l’estimation porte sur l’état initial (tomographie d’état quantique), nous donnons une formulation explicite de la fonction de vraisemblance grâce aux états adjoints, montrons que son logarithme est une fonction concave de l’état initial et élaborons une expression intrinsèque de la variance grâce à des développements asymptotiques de moyennes bayésiennes et reposant sur la géométrie de l’espace des opérateurs densité.Ces méthodes d’estimation ont été appliquées et validées expérimentalement pour deux types de mesures quantiques : des mesures en temps discret non destructives de photons dans le groupe d’électrodynamique quantique en cavité du LKB au Collège de France, des mesures diffusives de la fluorescence d’un qubit supraconducteur dans le groupe d’électronique quantique du LPA à l’ENS Paris. / In recent years, the scientifical community has succeeded in experimentally building simple quantum systems on which series of measurements are successively acquired along quantum trajectories, without any reinitialization of their state (density operator) by the physicist. The subject of this thesis is to adapt the quantum tomography techniques (state and parameters estimation) to this frame, in order to take into account the feedback of the measurement on the state, the decoherence and experimental imperfections.During the measurement process, the evolution of the quantum state is then governed by a hidden-state Markov process (Belavkin quantum filters). Concerning continuous-time measurements, we begin by showing how to discretize the stochastic master equation, while preserving the positivity and the trace of the quantum state, and so reducing to discrete-time quantum filters. Then, we develop,starting from trajectories of discrete-time measurements, some maximum-likelihood estimation techniques for initial state and parameters. This estimation is coupled with its confidence interval. When it concerns the value of parameters (quantum process tomography), we provide a result of robustness using the formalism of particular filters, and we propose a maximization technique based on the calculus of gradient by adjoint method, which is well adapted to the multi-parametric case. When the estimation concerns the initial state (quantum state tomography), we give an explicit formulation of the likelihood function thanks to the adjoint states, show that its logarithm is a concave function of the initial state and build an intrinsic expression of the variance, obtained from asymptotic developments of Bayesian means, lying on the geometry of the space of density operators.These estimation techniques have been applied and experimentally validated for two types of quantum measurements: discrete-time non-destructive measurements of photons in the group of cavity quantum electro-dynamics of LKB at Collège de France, diffusive measurements of the fluorescence of a supra-conducting qubit in the quantum electronics group of LPA at ENS Paris.

Page generated in 0.0726 seconds