• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Measurement and manipulation of quantum states of travelling light fields

Cooper, Merlin Frederick Wilmot January 2014 (has links)
This thesis is concerned with the generation of non-classical quantum states of light, the photon-level manipulation of quantum states and the accurate tomography of both quantum states and quantum processes. In optics, quantum information can be encoded and processed in both discrete and continuous variables. Hybrid approaches combining for example homodyne detection with conditional state preparation and manipulation are gaining increasing prominence. The development and characterization of a time-domain balanced homodyne detector (BHD) is presented. The detector has a bandwidth of 80 MHz, a signal-to-noise ratio of 14.5 dB and an efficiency of 86% making it well-suited to pulse-to-pulse measurement of quantum optical states. The BHD is employed to perform quantum state tomography (QST) of non-classical multi-photon Fock states generated by spontaneous parametric down-conversion. A detailed investigation of the mode-matching between the local oscillator used for homodyne detection and the generated Fock states is presented. The one-, two- and three-photon Fock states are reconstructed with a combined preparation and detection efficiency exceeding 50%. Fock states have a number of applications in quantum state engineering, where non-classical ancilla states and conditional measurements enable photon-level manipulation of quantum states. Fock state filtration (FSF) is investigated - an example of a post-selected beam splitter which is a basic building block for many quantum state engineering protocols. A model is developed incorporating the effect of experimental imperfections. An experimental implementation of a Fock state filter is fully characterized by means of coherent-state quantum process tomography (QPT). The reconstructed process is found to be consistent with the model. The filter preferentially removes the single-photon component from an arbitrary input quantum state. Calibration of optical detectors in the quantum regime is discussed. Quantum detector tomography (QDT) is reviewed and contrasted with a new technique for performing QST with a calibrated detector known as the fitting of data patterns (FDP). The first experimental characterization of a BHD is performed by probing the detector with phase-averaged coherent states. The FDP method is shown to be applicable to the estimation of quantum processes, where a detector response is not assumed - thus demonstrating the versatility of the FDP approach as a new method in the quantum tomography toolbox.
2

Weak mutually unbiased bases with applications to quantum cryptography and tomography

Shalaby, Mohamed Mahmoud Youssef January 2012 (has links)
Mutually unbiased bases is an important topic in the recent quantum system researches. Although there is much work in this area, many problems related to mutually unbiased bases are still open. For example, constructing a complete set of mutually unbiased bases in the Hilbert spaces with composite dimensions has not been achieved yet. This thesis defines a weaker concept than mutually unbiased bases in the Hilbert spaces with composite dimensions. We call this concept, weak mutually unbiased bases. There is a duality between such bases and the geometry of the phase space Zd × Zd, where d is the phase space dimension. To show this duality we study the properties of lines through the origin in Zd × Zd, then we explain the correspondence between the properties of these lines and the properties of the weak mutually unbiased bases. We give an explicit construction of a complete set of weak mutually unbiased bases in the Hilbert space Hd, where d is odd and d = p1p2; p1, p2 are prime numbers. We apply the concept of weak mutually unbiased bases in the context of quantum tomography and quantum cryptography.
3

Weak mutually unbiased bases with applications to quantum cryptography and tomography. Weak mutually unbiased bases.

Shalaby, Mohamed Mahmoud Youssef January 2012 (has links)
Mutually unbiased bases is an important topic in the recent quantum system researches. Although there is much work in this area, many problems related to mutually unbiased bases are still open. For example, constructing a complete set of mutually unbiased bases in the Hilbert spaces with composite dimensions has not been achieved yet. This thesis defines a weaker concept than mutually unbiased bases in the Hilbert spaces with composite dimensions. We call this concept, weak mutually unbiased bases. There is a duality between such bases and the geometry of the phase space Zd × Zd, where d is the phase space dimension. To show this duality we study the properties of lines through the origin in Zd × Zd, then we explain the correspondence between the properties of these lines and the properties of the weak mutually unbiased bases. We give an explicit construction of a complete set of weak mutually unbiased bases in the Hilbert space Hd, where d is odd and d = p1p2; p1, p2 are prime numbers. We apply the concept of weak mutually unbiased bases in the context of quantum tomography and quantum cryptography. / Egyptian government.
4

Towards A Quantum Memory For Non-Classical Light With Cold Atomic Ensembles

Burks, Sidney 13 October 2010 (has links) (PDF)
Une mémoire quantique réversible permettant de stocker et relire de l'information quantique est une composante majeure dans la mise en œuvre de nombreux protocoles d'information quantique. Comme la lumière est un porteur de l'information quantique fiable sur des longues distances, et comme les atomes offrent la possibilité d'obtenir de longues durées de stockage, le recherche actuelle sur la création d'une mémoire quantique se concentre sur la transfert des fluctuations quantiques de la lumière sur des cohérences atomiques. Le travail réalisé durant cette thèse porte sur le développement d'une mémoire quantique pour la lumière comprimée, utilisant un ensemble d'atomes froids de Césium stock'es dans un piege magnéto-optique. Nos deux principaux objectifs étaient le développement d'une source de lumière non-classique, et le développement d'un milieu atomique pour le stockage de celle-ci. Tout d'abord, nous commençons par présenter la construction d'un oscillateur paramétrique optique qui utilise un cristal non-linéaire de PPKTP. Cet OPO fonctionne comme source d'états de vide comprime résonant avec la raie D2 du Césium. Nous caractérisons ces états grâce à une reconstruction par tomographie quantique, en utilisant une approche de vraisemblance maximale. Ensuite, nous examinons une nouvelle expérience qui nous permet d'utiliser comme milieu de stockage des atomes froids de Césium dans un piège magneto-optique récemment développé. Car cette expérience exige l'utilisation de nouveaux outils et techniques, nous discutons le développement de ceux-ci, et comment ils ont contribue à notre progression vers le stockage des états quantiques dans nos atomes des Césium, et finalement vers l'intrication de deux ensembles atomiques.
5

Estimation d'état et de paramètres pour les systèmes quantiques ouverts / Estimation of state and parameters in open quantum systems

Six, Pierre 22 November 2016 (has links)
La communauté scientifique a réussi ces dernières années à bâtir des systèmes quantiques simples sur lesquels des séries de mesures sont acquises successivement le long de trajectoires quantiques et sans réinitialisation de l’état (opérateur densité) par l’expérimentateur.L’objet de cette thèse est d’adapter les méthodes de tomographie quantique (estimation d’état et de paramètres) à ce cadre pour prendre en compte la rétroaction de la mesure sur l’état, la décohérence et les imperfections expérimentales.Durant le processus de mesure, l’évolution de l’état quantique est alors gouvernée par un processus de Markov à états cachés (filtres quantiques de Belavkin). Pour des mesuresen temps continu, nous commençons par montrer comment discrétiser l’équation maîtresse stochastique tout en préservant la positivité et la trace de l’état quantique, et ainsi sera mener aux filtres quantiques en temps discret. Ensuite, nous développons, à partir de trajectoires de mesures en temps discret, des techniques d’estimation par maximum de vraisemblance pour l’état initial et les paramètres. Cette estimation est accompagnée de son intervalle de confiance. Lorsqu’elle concerne des valeurs de paramètres (tomographie de processus quantique), nous donnons un résultat de robustesse grâce au formalisme des filtres particulaires et nous proposons une méthode de maximisation fondée sur le calcul du gradient par l’adjoint et bien adaptée au cas multiparamétrique. Lorsque l’estimation porte sur l’état initial (tomographie d’état quantique), nous donnons une formulation explicite de la fonction de vraisemblance grâce aux états adjoints, montrons que son logarithme est une fonction concave de l’état initial et élaborons une expression intrinsèque de la variance grâce à des développements asymptotiques de moyennes bayésiennes et reposant sur la géométrie de l’espace des opérateurs densité.Ces méthodes d’estimation ont été appliquées et validées expérimentalement pour deux types de mesures quantiques : des mesures en temps discret non destructives de photons dans le groupe d’électrodynamique quantique en cavité du LKB au Collège de France, des mesures diffusives de la fluorescence d’un qubit supraconducteur dans le groupe d’électronique quantique du LPA à l’ENS Paris. / In recent years, the scientifical community has succeeded in experimentally building simple quantum systems on which series of measurements are successively acquired along quantum trajectories, without any reinitialization of their state (density operator) by the physicist. The subject of this thesis is to adapt the quantum tomography techniques (state and parameters estimation) to this frame, in order to take into account the feedback of the measurement on the state, the decoherence and experimental imperfections.During the measurement process, the evolution of the quantum state is then governed by a hidden-state Markov process (Belavkin quantum filters). Concerning continuous-time measurements, we begin by showing how to discretize the stochastic master equation, while preserving the positivity and the trace of the quantum state, and so reducing to discrete-time quantum filters. Then, we develop,starting from trajectories of discrete-time measurements, some maximum-likelihood estimation techniques for initial state and parameters. This estimation is coupled with its confidence interval. When it concerns the value of parameters (quantum process tomography), we provide a result of robustness using the formalism of particular filters, and we propose a maximization technique based on the calculus of gradient by adjoint method, which is well adapted to the multi-parametric case. When the estimation concerns the initial state (quantum state tomography), we give an explicit formulation of the likelihood function thanks to the adjoint states, show that its logarithm is a concave function of the initial state and build an intrinsic expression of the variance, obtained from asymptotic developments of Bayesian means, lying on the geometry of the space of density operators.These estimation techniques have been applied and experimentally validated for two types of quantum measurements: discrete-time non-destructive measurements of photons in the group of cavity quantum electro-dynamics of LKB at Collège de France, diffusive measurements of the fluorescence of a supra-conducting qubit in the quantum electronics group of LPA at ENS Paris.
6

Manipulation de champs quantiques mésoscopiques / Manipulation of mesoscopic quantum fields

Ferreyrol, Franck 22 March 2011 (has links)
L'objectif de cette thèse concerne la manipulation à l'échelle quantique du champ électromagnétique dans le cadre de l'information quantique à variables continues. Pour ce faire nous mélangeons les outils de l'optique quantique à variables discrètes, où la lumière est décrite en termes de photons, avec l'approche continue, traitant des quadratures du champ. Cette technique permet de produire des états non-classiques décrits par des fonctions de Wigner prenant des valeurs négatives. Nous avons pu générer des états intriqués à partir d'impulsions lumineuses initialement indépendantes et pouvant être séparées par une longue distance, l'intrication s'effectuant au travers d'un canal acceptant de fortes pertes. Nous avons ensuite démontré et caractérisé expérimentalement un protocole non-déterministe permettant d'amplifier de faibles signaux sans en amplifier le bruit quantique, augmentant ainsi le rapport signal sur bruit. Puis nous avons mis en œuvre et comparé expérimentalement différentes mesures de non-gaussianité d'un état quantique : ce caractère propre à une description continue de la lumière est d'un intérêt capital pour l'information quantique. Enfin nous avons développé et testé deux améliorations pour notre dispositif. La première est un amplificateur femtoseconde pour notre laser impulsionnel, qui permettra d'obtenir de meilleurs états de départ pour nos expériences. La deuxième est un appareil capable de discriminer le nombre de photon, donnant ainsi des résultats plus précis que ceux des détecteurs dont nous disposons actuellement qui sont uniquement capable de détecter la présence de photons. / This thesis aims at handling the electromagnetic field at a quantum scale in the area of quantum information processing. For this purpose we mixed tools of discrete variable quantum optics, where light is described in terms of photons, with the continuous approach, which uses the quadratures of the field. This technique enables the production of non-classical states which should be described by Wigner functions that takes negative values. We have generated entangled states from ultra-short light pulses initially independent and which can be separated by a long distance: the entanglement is indeed performed through a low-transmission channel. Then we have experimentally demonstrated and characterized a protocol that non-deterministically amplifies low signals without amplifying the quantum noise, increasing the signal to noise ratio. Furthermore we experimentally implement and compared several measures of the non-gaussianity of a quantum state: this characteristic, which belongs to continuous description of light, is of essential interest for quantum information processing. Finally we develop and test two improvements for our setup. The first one is a femtosecond amplifier for our pulsed laser. It will enable us to obtain better primitive states for our experiments. The second one is an apparatus that can discriminate the number of photon in a pulse, giving more accurate results than the detectors we used up to now that are only able to detect the presence of photons.
7

Single- and entangled-photon emission from strain tunable quantum dots devices

Zhang, Jiaxiang 08 September 2015 (has links) (PDF)
On demand single-photon and entangled-photon sources are key building-blocks for many proposed photonic quantum technologies. For practical device applications, epitaxially grown quantum dots (QDs) are of increasing importance due to their bright photon emission with sharp line width. Particularly, they are solid-state systems and can be easily embedded within a light-emitting diode (LED) to achieve electrically driven sources. Therefore, one would expect a full-fledged optoelectronic quantum network that is running on macroscopically separated, QD-based single- and entangled-photon devices. An all-electrically operated wavelength-tunable on demand single-photon source (SPS) is demonstrated first. The device consists of a LED in the form of self-assembled InGaAs QDs containing nanomembrane integrated onto a piezoelectric crystal. Triggered single photons are generated via injection of ultra-short electrical pulses into the diode, while their energy can be precisely tuned over a broad range of about 4.8 meV by varying the voltage applied to the piezoelectric crystal. High speed operation of this single-photon emitting diode up to 0.8 GHz is demonstrated. In the second part of this thesis, a fast strain-tunable entangled-light-emitting diode (ELED) is demonstrated. It has been shown that the fine structure splitting of the exciton can be effectively overcome by employing a specific anisotropic strain field. By injecting ultra-fast electrical pulses to the diode, electrically triggered entangled-photon emission with high degree of entanglement is successfully realized. A statistical investigation reveals that more than 30% of the QDs in the strain-tunable quantum LED emit polarization-entangled photon-pairs with entanglement-fidelities up to f+ = 0.83(5). Driven at the highest operation speed ever reported so far (400 MHz), the strain-tunable quantum LED emerges as unique devices for high-data rate entangled-photon applications. In the end of this thesis, on demand and wavelength-tunable LH single-photon emission from strain engineered GaAs QDs is demonstrated. Fourier-transform spectroscopy is performed, from which the coherence time of the LH single-photon emission is studied. It is envisioned that this new type of LH exciton-based SPS can be applied to realize an all-semiconductor based quantum interface in the foreseeable distributed quantum networks.
8

Single- and entangled-photon emission from strain tunable quantum dots devices

Zhang, Jiaxiang 21 August 2015 (has links)
On demand single-photon and entangled-photon sources are key building-blocks for many proposed photonic quantum technologies. For practical device applications, epitaxially grown quantum dots (QDs) are of increasing importance due to their bright photon emission with sharp line width. Particularly, they are solid-state systems and can be easily embedded within a light-emitting diode (LED) to achieve electrically driven sources. Therefore, one would expect a full-fledged optoelectronic quantum network that is running on macroscopically separated, QD-based single- and entangled-photon devices. An all-electrically operated wavelength-tunable on demand single-photon source (SPS) is demonstrated first. The device consists of a LED in the form of self-assembled InGaAs QDs containing nanomembrane integrated onto a piezoelectric crystal. Triggered single photons are generated via injection of ultra-short electrical pulses into the diode, while their energy can be precisely tuned over a broad range of about 4.8 meV by varying the voltage applied to the piezoelectric crystal. High speed operation of this single-photon emitting diode up to 0.8 GHz is demonstrated. In the second part of this thesis, a fast strain-tunable entangled-light-emitting diode (ELED) is demonstrated. It has been shown that the fine structure splitting of the exciton can be effectively overcome by employing a specific anisotropic strain field. By injecting ultra-fast electrical pulses to the diode, electrically triggered entangled-photon emission with high degree of entanglement is successfully realized. A statistical investigation reveals that more than 30% of the QDs in the strain-tunable quantum LED emit polarization-entangled photon-pairs with entanglement-fidelities up to f+ = 0.83(5). Driven at the highest operation speed ever reported so far (400 MHz), the strain-tunable quantum LED emerges as unique devices for high-data rate entangled-photon applications. In the end of this thesis, on demand and wavelength-tunable LH single-photon emission from strain engineered GaAs QDs is demonstrated. Fourier-transform spectroscopy is performed, from which the coherence time of the LH single-photon emission is studied. It is envisioned that this new type of LH exciton-based SPS can be applied to realize an all-semiconductor based quantum interface in the foreseeable distributed quantum networks.

Page generated in 0.0553 seconds