Plusieurs problèmes d'optimisation liés à la théorie du transport optimal, concernant aussi des critères de concentration, sont étudiés. Il s'agit, pour ce qui est des primiers chapitres, de la minimization de fonctionnelles definies sur les mesures marginales du porblème de transport, en demandant que l'une soit concentrée et l'autre diffusée, alors que les deux doivent être proche au sense du transport de masse. D'autres chapitres portent sur des modèles différentes qui considèrent la concentration des parcours suivis par les particules lors du mouvement, en donnant des effets de congestion ou branchement. Plusieurs problèmes font apparaître des structures de dimension 1 (reseaux, supports rectifiables de mesures vectorielles, ensemble sous contraintes de longueur...) et leur régularité (blow-up) est étudiée dans les deux derniers chapitres. Les modèles viennent dans la majorité des cas de possibles applications à la planification urbaine, la biologie (arbres, feuilles et système sanguin), la géophysique (bassins fluviaux) et la mécanique des fluides. La thèse a été écrite sous la direction du Prof. Buttazzo et soutenue à l'Ecole Normale Supérieure de Pise.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00131383 |
Date | 12 December 2006 |
Creators | Santambrogio, Filippo |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds