This thesis explores the heat transfer characteristics of a packed bed thermal energy storage device through the development of a 3D model in COMSOL Multiphysics. The model is based on a laboratory-scale device consisting of an aluminum box filled with sand, which acts as the thermal storage medium. The medium is heated using two resistance heaters that are embedded into the sand. The heaters are raised to approximately 500°C during the experiment. Three thermocouples placed in the sand record the temperature during charging, thus generating a time-dependent temperature curve at three points. The model simulates this experimental system, and the resulting temperature distribution is compared to the experimental data to assess the model validity. To determine the temperature throughout the storage system at all times, the model solves the heat equation. The density and heat capacity of the sand are measured and added to the model. The model uses the effective medium technique to estimate the thermal conductivity of the sand. A secondary model is developed in Excel to calculate the effective thermal conductivity using twelve different correlations, and the results are compared. The Zehner-Bauer correlation with an added Damköhler radiation term predicted an effective thermal conductivity of 0.218 W/(m·K) at 25°C and 0.451 W/(m·K) at 500°C, with slightly exponential growth due to the influence of thermal radiation. When these values for conductivity are applied to the COMSOL model, there is strong agreement (average percent error < 5%) with the experimental temperature distributions. A parametric study is performed, and shows that increasing grain size and emissivity could increase the thermal conductivity by making use of the exponential growth of thermal radiation. The model serves as a design and learning tool, and a starting point for improving the performance of the thermal energy storage system. / Detta examensarbete undersöker värmeöverföringsegenskaperna hos en termisk energilagringsenhet med packad bädd genom utveckling av en 3D-modell i COMSOL Multiphysics. Modellen är baserad på en enhet i laboratorieskala som består av en aluminiumlåda fylld med sand, som fungerar som det termiska lagringsmediet. Mediet värms upp med hjälp av två motståndsvärmare som är inbäddade i sanden. Värmeelementen höjs till ca 500°C under experimentet. Tre termoelement placerade i sanden registrerar temperaturen under laddningen och genererar på så sätt en tidsberoende temperaturkurva i tre punkter. Modellen simulerar detta experimentella system, och den resulterande temperaturfördelningen jämförs med experimentella data för att bedöma modellens giltighet. För att bestämma temperaturen i hela lagringssystemet vid alla tidpunkter löser modellen värmeekvationen. Sandens densitet och värmekapacitet mäts och läggs till i modellen. Modellen använder den effektiva mediumtekniken för att uppskatta sandens värmeledningsförmåga. En sekundär modell utvecklas i Excel för att beräkna den effektiva värmeledningsförmågan med hjälp av tolv olika korrelationer, och resultaten jämförs. Zehner-Bauer korrelationen med en tillagd Damköhler strålningsterm förutsade en effektiv värmeledningsförmåga på 0,218 W/(m·K) vid 25°C och 0,451 W/(m·K) vid 500°C, med en något exponentiell tillväxt på grund av påverkan från värmestrålning. När dessa värden för konduktivitet tillämpas på COMSOL-modellen finns det en stark överensstämmelse (genomsnittligt procentuellt fel < 5%) med de experimentella temperaturfördelningarna. En parametrisk studie har utförts som visar att ökad kornstorlek ock emissivitet kan öka värmeledningsförmågan genom att utnyttja den exponentiella tillväxten av värmestrålning. Modellen fungerar som ett design- och inlärningsverktyg och som en utgångspunkt för att förbättra prestandan hos det termiska energilagringssystemet.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-335269 |
Date | January 2023 |
Creators | Juul, Gabriel |
Publisher | KTH, Skolan för industriell teknik och management (ITM) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-ITM-EX ; 2023:533 |
Page generated in 0.0166 seconds