Return to search

Equations hessiennes complexes sur des variétés kählériennes compactes

Sur une variété kählérienne compacte connexe de dimension 2m, ! étant la forme de Kähler, ­ une forme volume donnée dans [!]m et k un entier 1 < k < m, on cherche à résoudre de façon unique dans [!] l'équation ˜ !k ^!m−k = ­ en utilisant une notion de k-positivité pour ˜ ! 2 [!] (les cas extrêmes sont résolus : k = m par Yau, k = 1 trivialement). Nous résolvons par la méthode de continuité l'équation hessienne d'ordre k complexe elliptique correspondante sous l'hypothèse que la variété est à courbure bisectionelle holomorphe non-négative, ici requise seulement pour établir un pincement a priori de valeurs propres.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00463111
Date19 February 2010
CreatorsJbilou, Asma
PublisherUniversité de Nice Sophia-Antipolis
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0019 seconds