Esta tesis presenta una visión global y prácticamente autocontenida de los avances que se llevaron a cabo en la décadas de los años 1960 y 1970 con respecto al estudio de las estructuras de contacto en variedades diferenciables. Nuestro objetivo principal sería exhibir explícitamente estructuras métricas de contacto en las denominadas variedades de Brieskorn, que surgen como el conjunto de ceros de los llamados polinomios de Brieskorn-Pham intersecado con la esfera unitaria.
Para ello comenzaremos desarrollando a grandes rasgos los conceptos relacionados a la geometría simpléctica, la geometría compleja y las variedades de Kähler. Luego realizaremos un esbozo de prueba del teorema de Boothby-Wang, que constituye una generalización de la fibración de Hopf. A continuación presentaremos la construcción de estructuras métricas de contacto, en particular, las denominadas estructuras de Sasaki. El objetivo de ello es obtener estructuras de Sasaki en las variedades de Brieskorn, las cuales exhibiremos en coordenadas a fin de obtener un procedimiento para construirlas en una variedad de Brieskorn arbitraria. Por último, relacionaremos lo estudiado con la fibración de Boothby-Wang para probar que las estructuras construidas pueden ser proyectadas como hipersuperficies en el espacio proyectivo complejo. Debido a la naturaleza de las nociones presentadas, se espera que el lector tenga un conocimiento elemental de la geometría riemanniana. / Tesis
Identifer | oai:union.ndltd.org:PUCP/oai:tesis.pucp.edu.pe:20.500.12404/7486 |
Date | 15 November 2016 |
Creators | Ballón Bordo, Álvaro José |
Contributors | Cuadros Valle, Jaime |
Publisher | Pontificia Universidad Católica del Perú, PE |
Source Sets | Pontificia Universidad Católica del Perú |
Language | Spanish |
Detected Language | Spanish |
Type | info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess, http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
Page generated in 0.0026 seconds