Soit $M$ une variété projective lisse. Soit $\mathscr{F}$ une filtration holomorphe sur $M$, c'est à dire une filtration d'un fibré vectoriel holomorphe $\mathcal{F}$ induite par des sous-fibrés. Nous introduisons une notion de Gieseker stabilité pour de tels objets puis donnons une condition analytique équivalente en terme de métriques sur $\mathcal{F}$, dites équilibrées au sens de S.K. Donaldson, provenant d'une construction de la Théorie des Invariants Géométriques. Si le fibré $\mathcal{F}$ peut être muni d'une métrique $h$ solution de l'équation $\boldsymbol{\tau}$-Hermite-Einstein étudiée par \'lvarez-C\'{o}nsul et Garc\'a-Prada:<br />$$\sqrt\Lambda F_h = \sum_i \widetilde_i\pi^_$$<br />alors nous prouvons que la suite de métriques équilibrées existe, converge et sa limite est, à un changement conforme, solution de l'équation précédente. De ce résultat nous déduisons, par réduction dimensionnelle, un théorème d'approximation dans le cas des équations Vortex de Bradlow ainsi que leurs généralisations aux équations couplées Vortex.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00012107 |
Date | 28 October 2005 |
Creators | Keller, Julien |
Publisher | Université Paul Sabatier - Toulouse III |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0025 seconds