O presente texto descreve a tese de doutorado intitulada Análise de Formas usando Wavelets em Grafos. O tema está relacionado à área de Visão Computacional, particularmente aos tópicos de Caracterização, Descrição e Classificação de Formas. Dentre os métodos da extensa literatura em Análise de Formas 2D, percebe-se uma presença menor daqueles baseados em grafos com topologia arbitrária e irregular. As contribuições desta tese procuram preencher esta lacuna. É proposta uma metodologia baseada no seguinte pipeline : (i) Amostragem da forma, (ii) Estruturação das amostras em grafos, (iii) Função-base definida nos vértices, (iv) Análise multiescala de grafos por meio da Transformada Wavelet Espectral em grafos, (v) Extração de Características da Transformada Wavelet e (vi) Discriminação. Para cada uma das etapas (i), (ii), (iii), (v) e (vi), são inúmeras as abordagens possíveis. Um dos desafios é encontrar uma combinação de abordagens, dentre as muitas alternativas, que resulte em um pipeline eficaz para nossos propósitos. Em particular, para a etapa (iii), dado um grafo que representa uma forma, o desafio é identificar uma característica associada às amostras que possa ser definida sobre os vértices do grafo. Esta característica deve capturar a influência subjacente da estrutura combinatória de toda a rede sobre cada vértice, em diversas escalas. A Transformada Wavelet Espectral sobre os Grafos revelará esta influência subjacente em cada vértice. São apresentados resultados obtidos de experimentos usando formas 2D de benchmarks conhecidos na literatura, bem como de experimentos de aplicações em astronomia para análise de formas de galáxias do Sloan Digital Sky Survey não-rotuladas e rotuladas pelo projeto Galaxy Zoo 2 , demonstrando o sucesso da técnica proposta, comparada a abordagens clássicas como Transformada de Fourier e Transformada Wavelet Contínua 2D. / This document describes the PhD thesis entitled Shape Analysis by using Wavelets on Graphs. The addressed theme is related to Computer Vision, particularly to the Characterization, Description and Classication topics. Amongst the methods presented in an extensive literature on Shape Analysis 2D, it is perceived a smaller presence of graph-based methods with arbitrary and irregular topologies. The contributions of this thesis aim at fullling this gap. A methodology based on the following pipeline is proposed: (i) Shape sampling, (ii) Samples structuring in graphs, (iii) Function dened on vertices, (iv) Multiscale analysis of graphs through the Spectral Wavelet Transform, (v) Features extraction from the Wavelet Transforms and (vi) Classication. For the stages (i), (ii), (iii), (v) and (vi), there are numerous possible approaches. One great challenge is to nd a proper combination of approaches from the several available alternatives, which may be able to yield an eective pipeline for our purposes. In particular, for the stage (iii), given a graph representing a shape, the challenge is to identify a feature, which may be dened over the graph vertices. This feature should capture the underlying inuence from the combinatorial structure of the entire network over each vertex, in multiple scales. The Spectral Graph Wavelet Transform will reveal such an underpining inuence over each vertex. Yielded results from experiments on 2D benchmarks shapes widely known in literature, as well as results from astronomy applications to the analysis of unlabeled galaxies shapes from the Sloan Digital Sky Survey and labeled galaxies shapes by the Galaxy Zoo 2 Project are presented, demonstrating the achievements of the proposed technique, in comparison to classic approaches such as the 2D Fourier Transform and the 2D Continuous Wavelet Transform.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-02072014-150049 |
Date | 11 February 2014 |
Creators | Leandro, Jorge de Jesus Gomes |
Contributors | Cesar Junior, Roberto Marcondes |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0023 seconds