L'introduction (section 1) introduit la probl´ematique g´en´erale de la th`ese: la mesure quantitative des propri´et´es g´eom´etriques des vari´et´es alg´ebriques et particuli`erement leur triangulation. La section 2 explique une proc´edure de subdivision rapide et certifi´ee triangulant une courbe alg´ebrique r´eelle plane. Les outils math´ematiques sont le degr´e topologique, la base des polynˆomes de Bernstein. La section 3 est une copie d'un article expliquant la m´ethode de subdivision pour les surfaces lisses dans Rn. Elle comporte une analyse de complexit´e. La section 4 pr´esente une version quantitative du th´eor`eme de trivialit´e topologique de Thom-Mather pour des applications semi-alg´ebriques non lisses. Il en d´ecoule: une version “m´etriquement stable” du th´eor`eme de structure conique local et de l'existence d'un “tube de Milnor” autour des strates. Un algorithme de triangulation utilisant des partitions de Vorono˘i (sa mise en place n'est pas compl`ete car l'estimation effective de la transversalit´e n'est pas compl`etement trait´e). La section 5 est une copie d'un article paru en 2008 sur une m´ethode de balayage pour calculer la topologie d'une surface singuli`ere de R3. Elle repose sur l'utilisation du th´eor`eme de Thom-Mather. La section 6 pr´esente une borne sur le nombre g´en´erique de composantes connexes dans une section d'un germe analytique r´eel par un espace affine en fonction de la multiplicit´e et de la dimension de l'espace. La borne ne s'applique pas toujours et des contre-examples sont donn´es.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00449506 |
Date | 04 December 2008 |
Creators | Alberti, Lionel |
Publisher | Université de Nice Sophia-Antipolis |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds