Return to search

Contrôle en dimension finie et infinie

Ce mémoire présente les travaux que j'ai effectués, tout d'abord, à<br />l'Institut de Mathématiques de l'Université de Dijon, pendant ma thèse de<br />1998 à 2000, puis dans l'équipe d'Analyse Numérique et Equations aux<br />Dérivées Partielles du Département de Mathématiques de l'Université<br />d'Orsay, depuis 2001.<br />Ces travaux sont regroupés en deux parties, la première traitant de<br />problèmes de contrôle en dimension finie, et la seconde, en dimension<br />infinie. Ces deux parties sont elles-mêmes séparées en deux<br />sous-parties~: les résultats théoriques, et les résultats<br />numériques. A la fin de chaque partie, des projets de recherche sont<br />présentés.<br /><br /><br />Dans la première partie, on s'intéresse à <br />la régularité de la fonction valeur associée à un problème de contrôle<br />optimal non linéaire en dimension finie. Il s'avère<br />que cette régularité est liée à l'existence de \textit{trajectoires<br />singulières minimisantes}.<br />Rappelons qu'une trajectoire \textit{singulière} est une singularité<br />de l'ensemble des solutions du système de contrôle.<br />Selon le principe du maximum de Pontryagin, les trajectoires<br />singulières sont projections d'\textit{extrémales anormales}, par<br />opposition aux \textit{extrémales normales} qui constituent le cadre<br />classique du calcul des variations.<br />Pour des systèmes affines à coût quadratique,<br />on montre que, s'il n'existe aucune trajectoire singulière<br />minimisante, alors la fonction valeur associée est<br />\textit{sous-analytique} (cela s'étend à des situations<br />plus générales). <br /><br />Ces résultats ont des conséquences dans les théories d'Hamilton-Jacobi<br />et de stabilisation. Tout d'abord, on montre que<br />la \textit{solution de viscosité} de certaines<br />classes d'\textit{équations d'Hamilton-Jacobi}<br />est sous-analytique, ce qui implique en particulier<br />que l'ensemble de ses singularités est une sous-variété stratifiée de<br />codimension au moins un. Ensuite, on montre un résultat de<br />\textit{stabilisation hybride semi-globale} pour des<br />systèmes de contrôle affines sans dérive.<br /><br />S'il existe des trajectoires singulières minimisantes, la fonction<br />valeur n'est pas sous-analytique en général. Une étude<br />asymptotique est faite sur le cas modèle sous-Riemannien de Martinet.<br />Dans le cas intégrable, on montre que la fonction valeur appartient à<br />la classe \textit{log-exp}, qui est une extension de la classe<br />sous-analytique avec des fonctions logarithme et exponentielle.<br /><br />Ces résultats motivent donc l'étude des propriétés des<br />trajectoires singulières.<br /><br />Tout d'abord, concernant leur optimalité, ces trajectoires ont,<br />sous des conditions génériques, la propriété de<br />\textit{rigidité}, c'est-à-dire qu'elles sont localement isolées<br />parmi toutes les solutions du système ayant les mêmes extrémités, et<br />donc, elles sont localement optimales, jusqu'à un premier temps dit<br />\textit{conjugué} que l'on peut caractériser.<br /><br />On s'intéresse alors à l'occurence des trajectoires singulières<br />minimisantes.<br />Des résultats de type \textit{Morse-Sard} sont présentés dans le cadre<br />de la géométrie sous-Riemannienne, qui montrent qu'elles ne<br />remplissent que peu d'espace.<br />En particulier, on montre que l'image de l'application exponentielle<br />(qui paramétrise les extrémales normales) est partout dense, et même<br />de mesure de Lebesgue pleine dans le cas de corang un.<br /><br />On prend ensuite le point de vue inverse, en s'intéressant aux<br />propriétés de généricité des trajectoires singulières, pour des<br />systèmes de contrôle affines. On montre que, génériquement au sens de<br />Whitney, elles sont \textit{d'ordre minimal} et \textit{de corang un},<br />ce qui a des corollaires en contrôle optimal.<br />Par exemple, pour des systèmes de contrôle affines génériques ayant<br />plus de trois champs de vecteurs, avec coût quadratique, il n'existe<br />aucune trajectoire singulière minimisante~;<br />en particulier, la fonction valeur associée est donc sous-analytique.<br /><br /><br /><br />Dans le deuxième chapitre de la première partie, on s'intéresse aux<br />méthodes numériques en<br />contrôle optimal. Il existe deux types principaux de méthodes~: les<br />\textit{méthodes directes} d'une part, qui reposent sur une discrétisation<br />totale du problème de contrôle optimal, et conduisent à des problèmes<br />de programmation non linéaire~; les \textit{méthodes indirectes}<br />d'autre part,<br />basées sur le principe du maximum, qui réduisent le problème à un<br />problème aux valeurs limites se résolvant numériquement par une<br />\textit{méthode de tir}. Ces dernières sont<br />particulièrement adaptées aux applications en aéronautique présentées<br />ici. Le principe du maximum étant une condition nécessaire<br />d'optimalité, il convient de s'assurer a posteriori que les<br />extrémales calculées par la méthode de tir sont bien optimales.<br />Pour cela, on rappelle le concept de \textit{temps<br />conjugué}, c'est-à-dire le temps au-delà duquel une extrémale n'est<br />plus localement optimale, et on décrit des algorithmes de calcul,<br />basés sur des développements théoriques récents en théorie du<br />contrôle optimal géométrique, qui couvrent le cas normal et le cas<br />anormal. Ces algorithmes, ainsi que la méthode de tir, sont<br />implémentés dans le logiciel \textit{COTCOT}<br />(Conditions of Order Two and COnjugate times), disponible sur le web.<br /><br />Des applications en aéronautique sont ensuite présentées~: le problème<br />de rentrée atmosphérique d'une navette spatiale tout d'abord, où le<br />but est de déterminer une trajectoire optimale jusqu'à une cible<br />donnée, le contrôle étant l'angle de g\^\i te, et le coût étant<br />le flux thermique total (facteur d'usure). La navette est de plus<br />soumise à des contraintes sur l'état~: flux thermique,<br />accélération normale, et pression dynamique. Ces contraintes<br />rendent le problème de contrôle optimal difficile, et nécessitent<br />une étude préliminaire théorique et géométrique sur les synthèses<br />optimales locales avec contraintes.<br />Ensuite, on présente le problème de transfert orbital d'un satellite à<br />poussée faible, où le but est de transférer l'engin d'une orbite basse<br />à une orbite géostationnaire, en temps minimal, sachant que la force de<br />propulsion est très faible. Le problème de temps optimal est important<br />lorsque la poussée est faible (par exemple, une propulsion<br />ionique), car le transfert orbital peut prendre plusieurs mois.<br />Pour ces deux problèmes, des simulations numériques,<br />utilisant les méthodes précédentes, sont présentées.<br /><br /><br /><br /><br /><br />Dans la deuxième partie, on s'intéresse à des problèmes de contrôle des<br />équations aux dérivées partielles.<br />On présente tout d'abord une méthode de contrôlabilité et de<br />stabilisation, qui consiste à stabiliser un système de contrôle le<br />long d'un chemin d'états stationnaires. Pour mettre en évidence l'idée<br />principale, cette méthode est présentée en dimension finie. Elle<br />permet de construire un contrôle feedback sous forme explicite, ainsi<br />qu'une fonction de Lyapunov, et par ailleurs, elle est facilement<br />implémentable. Cette méthode de déformation quasi-statique permet<br />d'établir des résultats de contrôlabilité exacte et de stabilisation<br />pour des équations de la chaleur et des ondes semi-linéaires en<br />dimension un, où la non-linéarité est quelconque. Notons que<br />l'existence de fonctions barrières et/ou de<br />phénomènes d'explosion limitent les résultats de contrôlabilité.<br />Pour ces deux équations, on montre que l'on peut passer, avec un<br />contrôle frontière, en temps éventuellement grand, d'un état<br />stationnaire à tout autre, pourvu qu'ils appartiennent à une même<br />composante connexe de l'ensemble des états stationnaires (cette<br />condition étant vérifiée dans un grand nombre de cas). La procédure<br />consiste en fait à stabiliser un système de contrôle linéaire<br />instationnaire de dimension finie, et on peut construire un contrôle<br />sous forme de boucle fermée, en calculant un nombre fini de composantes<br />de la solution, dans une décomposition sur une base Hilbertienne (pour<br />l'équation de la chaleur) ou sur une base de Riesz (pour l'équation<br />des ondes). Des simulations numériques sont effectuées.<br /><br />On présente ensuite un résultat de contrôlabilité exacte<br />sur les flots de Couette, qui sont des solutions stationnaires<br />particulières des équations de Navier-Stokes d'un fluide<br />incompressible entre deux cylindres<br />concentriques infinis en rotation. On montre qu'il est possible de passer d'un<br />flot de Couette à tout autre, en agissant juste sur la rotation du<br />cylindre extérieur.<br /><br /><br />Dans le dernier chapitre,<br />on s'intéresse à la semi-discrétisation (en espace) des<br />équations aux dérivées partielles linéaires contrôlées.<br />La discrétisation d'une EDP contrôlable, en utilisant par exemple une<br />méthode de Galerkin, conduit à une<br />famille de systèmes de contrôle linéaires, et on se pose la question<br />de savoir si on peut déterminer des contrôles pour ces systèmes<br />semi-discrétisés, convergeant, lorsque le pas de discrétisation tend<br />vers zéro, vers un contrôle pour le modèle continu, permettant<br />d'atteindre un certain point. Pour des EDP<br />linéaires contrôlables, il existe de nombreuses<br />méthodes pour réaliser la contrôlabilité~; parmi elles, la méthode HUM<br />(\textit{Hilbert Uniqueness Method})<br />consiste à minimiser la norme $L^2$ du<br />contrôle pour atteindre une cible fixée. Pour des systèmes<br />paraboliques exactement contrôlables à zéro, sous des conditions<br />standards sur le procédé de semi-discrétisation (vérifiées pour la<br />plupart des méthodes habituelles), lorsque l'opérateur de contrôle<br />n'est que faiblement non borné, on montre un résultat de<br />\textit{contrôlabilité uniforme} des systèmes de contrôles<br />discrétisés. De plus, on donne un procédé de minimisation pour<br />calculer des contrôles sur les modèles approchés, qui convergent<br />vers le contrôle HUM du modèle continu permettant d'atteindre une<br />certaine cible.<br />La condition sur l'opérateur de contrôle est vérifiée, par exemple,<br />pour l'équation de la chaleur avec contrôle frontière de type Neumann,<br />et des simulations numériques sont présentées dans ce cadre.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00086509
Date25 November 2005
CreatorsTrélat, Emmanuel
PublisherUniversité Paris Sud - Paris XI
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
Typehabilitation ࠤiriger des recherches

Page generated in 0.0031 seconds