Return to search

An?lise prote?mica de estirpes selvagem PAL5T e mutante lao- de Gluconacetobacter diazotrophicus na presen?a e aus?ncia de triptofano e o efeito de sua inocula??o em plantas micropropagadas de cana-de-a??car / Proteomic analysis of PAL5 wild strain and lao- mutant strain of Gluconacetobacter diazotrophicus cultivated in the presence and absence of tryptophan and the inoculation effect on sugarcane micropropagated plants

Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2017-04-26T14:05:04Z
No. of bitstreams: 1
2012 - Patricia Gon?alves Galv?o.pdf: 5289496 bytes, checksum: 8dcb41bc971793cc8b4cdf383401ade4 (MD5) / Made available in DSpace on 2017-04-26T14:05:05Z (GMT). No. of bitstreams: 1
2012 - Patricia Gon?alves Galv?o.pdf: 5289496 bytes, checksum: 8dcb41bc971793cc8b4cdf383401ade4 (MD5)
Previous issue date: 2012-03-01 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPES / The objective of this study was to evaluate the protein profile expression of G. diazotrophicus PAL5 and its defective mutant in the indole compound production (lao-) grown in the presence or absence of tryptophan through 2DE-PAGE technique. The spectrometric analysis allowed the identification of 24 differentially expressed proteins. The majority of the proteins down regulated in the wild type PAL5 cultivated with tryptophan as compared to the cultivation without the amino acid belonged to the category of transductional modification, protein turnover and chaperones. For the mutant lao- grown in the same conditions, the majority of the proteins that presented differential expression belonged to the category of production and conversion of energy. In addition, the majority of the protein differentially expressed in the mutant lao- as compared to the wild-type PAL5 strains belonged to carbohydrates metabolism and transport. On the other hand, no proteins related to the tryptophan biosynthesis were detected in any condition, possibly due to the low yield of the proteins during the spectrometric analysis. Furthermore, mutants lao- and nif- of G. diazotrophicus were used for inoculation of micropropagated sugarcane plants in order to determine the influence of auxins produced by the bacteria in the plant growth promotion in comparison with PAL5. The first experiment, carried out in hydroponic conditions for 10 days showed a significant inoculation effect of the wild type on plant shoot. The other experiment was conducted in a period of 120 days in pots containing sand:vermiculite substrate fertilized with 30 and 60 ppm with ammonium sulphate enriched with 15N. The plants were inoculated in vitro with the wild type and mutants lao- and nif-, and the results showed a visual difference in the roots inoculated with PAL5 that showed higher volume suggesting a higher number of secondary roots and root hairs. On the other hand, the plants inoculated with the lao- mutant were ticker and showed lower number of secondary roots and root hairs. The shoot biomass of plants inoculated with PAL5 was higher than those inoculated with the mutant strains for both N dose, however the difference was not significant. Plants grown with 60 kg N dose and inoculated with the mutants showed lower accumulation of dry shoot mass than plants inoculated with the wild type strain. In conclusion, the present study showed the occurrence of several differentially expressed proteins either in the wild type strain or in the mutant lao- grown in LGI-P with and without tryptophan. The role played by these proteins in the metabolism of the bacteria requires additional studies, including different growth conditions. In addition, the inoculation of micropropagated sugarcane plants suggested a hormonal effect of the bacteria mainly on the root development e consequently in the N use efficiency. However, the size of the pots may have limited the plant development, suggesting that new experiments should be carried out in more appropriated conditions to confirm the influence of the indol production and the BNF during the association of the G. diazotrophicus and sugarcane plants / Este estudo teve por objetivo avaliar o perfil de express?o de prote?nas de G. diazotrophicus PAL5 e seu mutante defectivo na produ??o de compostos ind?licos (lao-) cultivados na presen?a e aus?ncia de triptofano atrav?s da t?cnica de 2DE-PAGE. A an?lise por espectrometria de massa permitiu a identifica??o de 24 prote?nas diferencialmente expressas. A maioria das prote?nas com a express?o diminu?da em PAL5 cultivada em meio com triptofano em rela??o ao meio de cultivo sem esse amino?cido pertenceu ? categoria modifica??o p?s-traducional, turnover de prote?nas e chaperonas. No mutante lao- cultivado nas mesmas condi??es, a maioria das prote?nas que apresentaram express?o diferencial pertencia ? categoria produ??o e convers?o de energia. Em adi??o, a maioria das prote?nas que foram diferencialmente expressas no mutante lao- em compara??o com a estirpe selvagem PAL5 pertencia ? categoria metabolismo e transporte de carboidratos. Por outro lado, n?o foram observadas prote?nas relacionadas ? bioss?ntese de triptofano em nenhuma condi??o analisada possivelmente devido ao baixo rendimento das identifica??es por espectrometria. Al?m das an?lises dos perfis de prote?nas, os mutantes lao- e nif- de G. diazotrophicus foram inoculados em plantas de cana-de-a??car micropropagadas com o objetivo de determinar a influ?ncia das auxinas na promo??o do crescimento dessa cultura em compara??o com a estirpe selvagem PAL5. O primeiro experimento, conduzido em condi??es de hidroponia pelo per?odo de 10 dias, mostrou efeito significativo da inocula??o da estirpe selvagem na promo??o de crescimento da parte ?rea das plantas, enquanto que o mutante lao-, n?o diferiu estatisticamente do controle n?o inoculado. O outro experimento, foi conduzido por 120 dias em vasos com substrato areia:vermiculita contendo 30 ou 60 ppm de sulfato de am?nio enriquecido com 15N e as pl?ntulas foram inoculadas in vitro. Os resultados mostraram uma diferen?a visual nas ra?zes das plantas inoculadas com PAL5, que se mostraram mais volumosas, aparentando um n?mero mais elevado de ra?zes secund?rias e p?los radiculares. J? as plantas inoculadas com lao- apresentaram ra?zes mais grossas, com um n?mero muito reduzido de ramifica??es ou p?los radiculares. A biomassa seca da parte a?rea das plantas inoculadas com PAL5 foi superior ?quelas inoculadas com as estirpes mutantes para as duas doses de nitrog?nio, por?m essa diferen?a n?o foi significativa. N?o foram observadas evid?ncias de contribui??o da FBN, por?m as plantas inoculadas com PAL5 foram menos eficientes na recupera??o do N fertilizante. Em conclus?o, o presente estudo mostra a ocorr?ncia de diversas prote?nas diferencialmente expressas tanto na estirpe selvagem como em lao- quando crescidas na presen?a e aus?ncia do amino?cido triptofano. A defini??o do papel dessas prote?nas no metabolismo da bact?ria requer estudos adicionais, inclusive em diferentes condi??es de cultivo. Em adi??o, a inocula??o dessas bact?rias em plantas de cana-de-a??car mostrou o efeito hormonal da bact?ria no desenvolvimento das ra?zes e, por conseguinte na maior efici?ncia de uso do N aplicado. Entretanto, dado a limita??o de espa?o f?sico dos vasos para o desenvolvimento das plantas, sugere-se a realiza??o de novos experimentos, em condi??es mais apropriadas, para confirmar a influ?ncia da produ??o de ?ndoles e da FBN durante a associa??o da bact?ria com as plantas de cana-de-a??car.

Identiferoai:union.ndltd.org:IBICT/oai:localhost:jspui/1557
Date01 March 2012
CreatorsGalv?o, Patr?cia Gon?alves
ContributorsBaldani, Jos? Ivo, Vidal, Marcia Soares, M?dici, Leonardo Oliveira, Hemerly, Adriana Silva, Teixeira, K?tia Regina dos Santos, Urquiaga, Segundo
PublisherUniversidade Federal Rural do Rio de Janeiro, Programa de P?s-Gradua??o em Fitotecnia, UFRRJ, Brasil, Instituto de Agronomia
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRRJ, instname:Universidade Federal Rural do Rio de Janeiro, instacron:UFRRJ
Rightsinfo:eu-repo/semantics/openAccess
Relation6 REFER?NCIAS BIBLIOGR?FICAS ADAMS, D.O.; YANG, S.F. Ethylene, the gaseous plant hormone: mechanism and regulation of biosynthesis. Trends in Biochemistry. Sciences, v.6, p.161-164, 1981. ADDICOTT, F. F.; LYON, J. L. Physiology of abscisic acid and related substances. Annual Review of Plant Physiology, v.20, p.139-164, 1969. AKIYOSHI, D.E., KLEE, H., AMASINO, R.M., NESTER, E.W.; GORDON, M.P. T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proceedings of the National Academy of Sciences. USA . v.81, p. 5994?5998, 1984. ANTELMANN, H.; TJALSMA, H.; VOIGT, B.; OHLMEIER, S.; BRON, S.; VAN DIJL, J.M.; HECKER, M. A proteomic view on genome-based signal peptide predictions. Genome Research, v.11, n.9, p.1484? 1502, 2001. ANTOUN, H.; KLOEPPER, J.W. Plant Growth promoting rhizobacteria. In: Brenner, S., and Miller, J.F. (Ed.) Encyclopedia of Genetics. p. 1477-1480, 2001. ARDISSONE S, FRENDO P, LAURENTI E, JANTSCHKO W, OBINGER C, PUPPO A, FERRARI, R.P. Purification and physical-chemical characterization of the three hydroperoxidases from the symbiotic bacterium Sinorhizobium meliloti. Biochemistry. v.43:12, p.692-12699, 2004. ARSHAD, M.; FRANKENBERGER, W.T. Plant growth-regulating substances in the rhizosphere: microbial production and functions. Advances in Agronomy, v.62, p.45-151, 1998. ASGHAR, H.N.; ZAHIR, Z.A.; ARSHAD, M. Screening rhizobacteria for improving the growth, yield and oil content of canola (Brassica nappus L.). Australian Journal of Agricultura Research, v.55, p.187-194, 2004. ASGHAR, H.; ZAHIR, Z.; ARSHAD, M.; KHALIQ, A. Relationship between in vitro production of auxins by rhizobacteria and their growth-promoting activities in Brassica juncea L. Biology and Fertility of Soils, v.35, p.231-237, 2002. ASHCROFT, A.E. Protein and peptide identification: the role of mass spectrometry in proteomics. Natural Product Reports, v.20, n.2, p.202-215, 2003. BABALOLA, O.O.; OSIR, E.O.; SANNI, A.I.; ODHIAMBO, G.D.; BULIMO, W.D. Amplification of 1-amino-cyclopropane-1-carboxylic (ACC) deaminase from plant growth promoting rhizobacteria in Striga-infested soil. African Journal of Biotechnology, v.2, p.157-160, 2003. BACA, B.E: AND ELMERICH, C. Microbial production of plants hormones by microorganisms. In: Associative Nitrogen-fixation Bacteria and Cyanobacteria. IV. 2007. Series: Nitrogen Fixation: Origins, Applications, and Research Progress, vol. 2007. p.113-137. ELMERICH, C.; NEWTON, W. (Eds). Springer Life Science. The Netherlands. 2007. 114 BA-IDRISS, E.E.; MAKAREWICZ, O.; FAROUK, A.; ROSNER, K.; GREINER, R.; BOCHOW, H.; RICHTER, T.; BORRISS, R. Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plantgrowth-promoting effect. Microbiology, v.148, p. 2097-2109, 2002. BALDANI, J.I.; BALDANI, V.L.D. History of the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. Anais da Academia Brasileira de Ci?ncia. v.77 (3), p.549-579, 2005. BALDANI, J.I.; REIS, V.M.; BALDANI, V.L.D.; DOBEREINER, J. A brief story of nitrogen fixation in sugarcane ? reasons for success in Brazil. Functional Plant Biology, v. 29, p. 417-423, 2002. BALDANI, J.I.; AZEVEDO, M.S.; REIS, V.M.; TEIXEIRA, K.R. dos S.; OLIVARES, F.L.; GOI, S.R.; BALDANI, V.L.D.; D?BEREINER, J. Fixa??o biol?gica de nitrog?nio em gram?neas: avan?os e aplica??es. In: SIQUEIRA, J.O.; MOREIRA, F.M.S.; LOPES, A.S.; GUILHERME, L.R.G.; FAQUIN, V.; FURTINI NETO, A.E.; CARVALHO, J.G. Inter-rela??o fertilidade, biologia do solo e nutri??o de plantas. Vi?osa: SBCS; Lavras: UFLA/DCS, p. 621-666, 1999. BALDANI, J.I.; BALDANI, V.L.D.; GOI, S.R.; DOBEREINER, J. Recent advances in BNF with non-legume plants. Soil Biology and Biochemistry, v. 29, p. 911-922, 1997. BARASH; MANULIS-SASSON. Virulence mechanisms and host specificity of gall-forming Pantoea agglomerans. Trends in Microbiology. v.15, n.12, p.538-545, 2007. BARBIERI; GALLI. Effect on wheat root development of inoculation with an Azospirillum brasiliensis mutant with altered indolo-3-acetic acid production. Research in Microbiology, v.144, p.69-75, 1993. BARBIERI, P.; ZANELLI, T.; GALLI, E.; ZANETTI, G. Wheat inoculation with Azospirillum brasiliense Sp6 and some mutants altered in nitrogen fixation and indole-3-acetic acid production. FEMS Microbiology Letters, v.36, p.87-90, 1986. BAREA, J.M., NAVARRO, E.; MONTOYA, E. Production of plant-growth regulators by rhizosphere phosphate-solubilizing bacteria. Journal of Applied Bacteriology v.40, p.129?134, 1976. BARON, C.; ZAMBRYSKI, P.C. The plant response in pathogenesis, symbiosis and wounding: variations on a commom theme? Annual Review of Genetics. v. 29, p. 107-129, 1995. BASTI?N, F.; COHEN, A.; PICCOLI, P.; LUNA, V.; BARALDI, R.; BOTTINI, R. Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regulation, v.24, p.7-11, 1998. 115 BEATTIE, G.A. Plant-associated bacteria: survey, molecular phylogeny, genomics and recent advances. In: S.S. Gnanamanickam (ed). Plant-Associated Bacteria. Springer, Netherlands, p. 1?56. 2006. BELIMOV, A.A.; HONTZEAS, N.; SAFRONOVA, V.I.; DEMCHINSKAYA, S.V.; PILUZZA, G.; BULLITTA, S.; GLICK, B.R. Cadmium-tolerant plant growth-promoting rhizobacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biology and Biochemistry, v.37, p.241?250, 2005. BELIMOV, A.A.; SAFRONOVA, V.I.; SERGEYEVA, T.A.; EGOROVA, T.N.; MATVEYEVA, V.A.; TSYGANOV, V.E.; BORISOV, A.Y.; TIKHONOVICH, I.A.; KLUGE, C.; PREISFELD, A.; DIETZ, K.J.; STEPANOK, V.V. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1- aminocyclopropane-1-carboxylate deaminase. Canadian Journal of Microbiology, v.47, p.642?652, 2001. BENT, E.; TUZUN, S.; CHANWAY, C.P.; ENEBAK,S. Alterations in plant growth and in root hormone levels of lodge pole pines inoculated with rhizobacteria. Canadian Journal of Microbiology, v.47, p.793-800, 2001. BERLETH, T.; SACHS, T. Plant morphogenesis: long-distance coordination and local patterning. Current Opinion in Plant Biology, v. 4, p. 57-62, 2001. BERTALAN, M.; ALBANO, R.; DE P?DUA, V.; ROUWS, L.,; ROJAS, C.; HEMERLY, A.; TEIXEIRA, K.; SCHWAB, S.; ARAUJO, J.; OLIVEIRA, A.; FRAN?A, L.; MAGALH?ES, V.; ALQU?RES, S.; CARDOSO, A.; ALMEIDA, W.; LOUREIRO, M. M.; NOGUEIRA, E.; CIDADE, D.; OLIVEIRA, D.; SIM?O, T.; MACEDO, J.; VALAD?O, A.; DRESCHSEL, M.; FREITAS, F.; VIDAL, M.; GUEDES, H.; RODRIGUES, E.; MENESES, C.; BRIOSO, P.; POZZER, L.; FIGUEIREDO, D.; MONTANO, H.; JUNIOR, J.; DE SOUZA FILHO, G.; MARTIN QUINTANA FLORES, V.; FERREIRA, B.; BRANCO, A.; GONZALEZ, P.; GUILLOBEL, H.; LEMOS, M.; SEIBEL, L.; MACEDO, J.; ALVES-FERREIRA, M.; SACHETTO-MARTINS, G.; COELHO, A.; SANTOS, E.; AMARAL, G.; NEVES, A.; PACHECO, A. B.; CARVALHO, D.; LERY, L.; BISCH, P.; R?SSLE, S. C.; URM?NYI, T.; RAEL PEREIRA, A.; SILVA, R.; RONDINELLI, E.; VON KR?GER, W.; MARTINS, O.; BALDANI, J. I.; FERREIRA, P. C. Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus PAL5. BMC Genomics. v.10, p.1-17, 2009. BISHOP, P.E.; PREMAKUMAR, R. In Biological Nitrogen Fixation (STACEY, G., BURRIS, R. H. AND EVANS, E. J., eds.), Chapman and Hall, New York, p. 736-762, 1992. BJELLQVIST, B., EK, K. Isoelectric focusing in immobilized pH gradients: Principle, methodology and some applications. Journal of Biochemical and Biophysical Methods. v.6, n.4, p.317-339, 1982. BLACKSTOCK, W.P.; WEIR M.P. Proteomics: quantitative and physical mapping of cellular proteins. Trends in Biotechnology. v.17 (3), p.121-127, 1999. BLAHA, D.; PRIGENT-COMBARET, C.; MIRZA, M.S.; MOE?NNE-LOCCOZ, Y. Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in 116 phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiology Ecology, v.56, p.455?470, 2006. BLATTNER, F.R, PLUNKETT, I.I.I.G.; BLOCH, C.A.; PERNA, N.T.; BURLAND, V., RILEY, M. et al. The complete genome sequence of Escherichia coli K-12. Science. v. 277 p.1453?62, 1997. BLOEMBERG, G.V.; LUGTENBERG, B.J.J. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Current Opinion in Plant Biology, Oxford, v.4, n.4, p.343-350, 2001. BODDEY, R.M., POLIDORO, J.C., RESENDE, A.S., ALVES, B.J.R., URQUIAGA, S. Use of the 15N natural abundance technique for the quantification of the contribution of N2 fixation to sugarcane and other grasses. Australian Journal of Plant Physiology v.28, p.889?895, 2001. BOIERO, L.; PERRIG, D.; MASCIARELLI, O.; PENA, C.; CASS?N, F.; LUNA, V. Phytohormone production by strains of Bradyrhizobium japonicum and possible physiological and technological implications. Applied Microbiology and Biotechnology, v.74, p.874?880, 2007. BOOGAARD, R. VAN DEN; VENEKLAAS, E.J.; LAMBERS, H. The association of biomass allocation with growth and water use efficiency of two Triticum aestivum cultivars. Australian Journal of Plant Physiology, v.23, p.751-761, 1996. BRADFORD, M.M. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. v.72, p. 248?254, 1976. BRANDL, M.T.; LINDOW, S. E. Cloning and characterization of a locus encoding an indolepyruvate decarboxylase involved in indole-3-acetic acid synthesis in Erwinia herbicola. Applied and Environmental Microbiology. v.62, p.4121-4128, 1996. BRAUN, R.J., KINKL, N., BEER, M., UEFFING, M. Two-dimensional electrophoresis of membrane proteins. Analytical and Bioanalytical Chemistry. v. 389, p.1033-1045, 2007. BROWN, M.E. Seed and root bacterization. Annual Review of Phytopathology., v.12, p.181-197, 1974. BUKAU, B., A.L. HORWICH. The Hsp70 and Hsp60 chaperone machines. Cell v. 92, p. 351?366, 1998. BURD, G.I.; DIXON, D.G. ; GLICK, B.R. A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Applied and Environmental Microbiology, v.64, p.3663?3668, 1998. BURDMAN, S.; JURKEVITCH, E.; OKON, Y. Recent advances in the use of plant growth promoting rhizobacteria (PGPR) in agriculture. In: N.S. SUBBA RAO Y.R. DOMMERGUES, (eds.), Microbial Interactions in Agriculture and Forestry. Science Publishers, Enfield, USA, V. 2, p.229-250, 2000. 117 BUYER, J.S.; KRATZKE, M.G.; SIKORA, L.J. A method for detection of pseudobactin, the siderophore produced by a plant-growth-promoting Pseudomonas strain, in the barley rhizosphere. Applied and Environmental Microbiology, v.59, p.677-681, 1993. CAHILL, D.J.; NORDHOFF, E.; O?BRIEN, J.; KLOSE, J.; EICKHOFF, H.; LEHRACH, H. Bridging genomics and proteomics. In: PENNINGTON, S.R; DUNN, M.J (Ed.). Proteomics from protein sequence to function. BIOS Scientific Publishers Limited, 2001. p.1-22. CALVINS, T.J.; WHIPKER B. E.; FONTENO, W.C.; HARDEN, B.; McCALL, I.; GIBSON, J. L. Monitoring and managing pH and EC using the PourThru Extraction Method. Horticulture Information Leaflet / NCSU, Raleigh, n.590, 2000. CAMPBELL, B.G.; THOMSON, J. A. 1-Aminocyclopropane- 1-carboxylate deaminase genes from Pseudomonas strains. FEMS Microbiology Letters, v.138, p.207-210, 1996. CAMPBELL, W.H. Nitrate reductase and its role in nitrate assimilation in plants. Physiologia Plantarum, Copenhagen, v. 74, p. 214-219, 1988. CANDIANO, G.; BRUSCHI, M.; MUSANTE, L.; SANTUCCI, L.; GHIGGERI, G.M.; CARNEMOLLA, B.; ORECCHIA, P.; ZARDI, L.; RIGHETTI, P.G.; Blue Silver: A very sensitive colloidal coomassie G-250 staining for proteome analysis. Electrophoresis. v.25, p. 1327-1333, 2004. CATTELAN, A.J.; HARTEL, P.G.; FUHRMANN, J.J. Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Science Society of America Journal, v.63, p.1670-1680, 1999. CAVALCANTE, V.A.; D?BEREINER, J. A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant and Soil. v.108, p.23-31, 1988. CHAVES, D.F.S.; FERRER, P.P.; CRUZ, L.M.; MONTEIRO, R.A. ; SOUZA, E.M.; PEDROSA, F.O. A two-dimensional proteome reference map of Herbaspirillum seropedicae proteins. Proteomics, v.7, p.3759-3763, 2007. CHAVES, D.F.S. An?lise e identifica??o de prote?nas celulares e prote?nas secretadas por Herbaspirillum seropedicae. Curitiba, 2008. 156 f. Tese (doutorado em Ci?ncias ? Bioqu?mica). Setor de Ci?ncias Biol?gicas, Universidade Federal do Paran?. CHEN, S.; HARMON, A.C. Advances in plant proteomics. Proteomics. v.6, p.5504-16, 2006. CLARKE, L.M., DILWORTH, M.J.; GLENN, A.R. Survival of Rhizobium meliloti WSM419 in laboratory culture: effect of combined pH shock and carbon substrate stress. Soil Biology and Biochemistry. v.25, p.1289-1291, 1993. COHEN, A.C.; BOTTINI, R.; PICCOLI, P.N. Azospirillum brasilense Sp245 produces ABA in chemically-defined culture medium and increases ABA content in arabidopsis plants. Plant Growth Regulation. v.54, p.97-103, 2008. 118 CONAB. COMPANHIA NACIONAL DE ABASTECIMENTO. Acompanhamento da safra brasileira de cana-de-a??car. Dispon?vel em: <http://www.conab.gov.br/> Acesso em: fevereiro de 2012. COSTACURTA, A.; VANDERLEYDEN, J. Synthesis of phytohormones by plant-associated bacteria. Critical Reviews in Microbiology, v.21, p.1-18, 1995 CRAWFORD, I.P.; GUNSALUS, I.C. Inducibility of tryptophan synthetase in Pseudomonas putida. Proceedings of the National Academy of Sciences, v.56, p.717-724, 1966. CRAWFORD, I.P. Evolution of a biosynthetic pathway: the tryptophan paradigm. Annual Review of Microbiology., v.43, p.567-600, 1989. CRAWFORD, I.P. Gene arrangements in the evolution of the tryptophan synthetic pathway. Bacterial. Rev., v.39, p.87- 120, 1975. CRAWFORD, I.P.; NICHOLS, B.P.; YANOFSK, Y.C. Nucleotide sequence of the trpB gene in Escherichia coli and Salmonella typhimurium. Journal of Molecular Biology. v.42, p.489-502, 1980. CRAWFORD, T.; BATES, J. H. Analysis of plasmids in Mycobacterium avium-intracellulare isolates from persons with acquired immunodeficiency syndrome. American Review of Respiratory Diseases, v.134, p.659-661, 1986. CREIGHTON, T.E.; YANOFSKY, C. Indole-3-glycerol phosphate synthetase of Escherichia coli, an enzyme of the tryptophan operon. The Journal of Biological Chemistry. v.241, p.4625-4637, 1966. CRESPI, M.; MESSENS, E.; CAPLAN, A.B.; VAN MONTAGU, M.; DESOMAR, J. Fasciation induction by the phytopathogen Rhodococcus fascians depends upon a linear plasmid encoding a cytokinin synthase gene. EMBO Journal, v.11, p.795-804, 1992. CZEKSTER, C.L. A enzima Indol-3-gliceral fosfato sintase de Mycobacterium tuberculosis H37Rv: estudos cin?ticos e mecanismo qu?mico. Disserta??o apresentada ao Programa de P?s-Gradua??o em Ci?ncias Biol?gicas: Bioqu?mica, da Universidade Federal do Rio Grande do Sul, como pr?-requisito para obten??o de Mestre em Bioqu?mica, Porto Alegre, 74pp, 2008. DAVID, C.; HERVE, C.; NICOLAS, F.; ISABELLE, S.J.; MOHAMED, A.; FRANC. P. The crystal structure of the pyoverdine outer membrane receptor FpyA from Pseudomonas aeruginosa at 3.6 A resolution. Journal of Molecular Biology, v.347, p.121-134, 2005. DAVIES, P.J. The plant hormones: their nature, occurrence and functions. In: DAVIES P.J, ed, Plant Hormones: Physiology, Biochemistry and Molecular Biology, Ed 5. Kluwer Academic Publishers, Dordrecht, The Netherlands, p. 1-12, 1995. DAVISON, J. Plant beneficial bacteria. Biotechnology, v.6, p.282-286, 1988. 119 DE SALAMONE, G.; GIORDANO, M.; TREVANI, A.S.; GAMBERALE, R.; VERMEULEN, M.; SCHETTINNI, J.; GEFFNER, J.R. Promotion of neutrophil apoptosis by TNF-alpha. Journal of Immunology. v.166, p.3476?3483, 2001. DEY, R.; PAL, K.K.; BHATT, D.M.; CHAUHAN, S.M. Growth promotion and yield enhancement of peanut (Aracis hypoggaea L.) by application of plant growth promoting rhizobacteria. Microbiological Research. v.159, p.371?394, 2004. DOBBELAERE, S.; CROONENBORGHS, A.; THYS, A.; PTACEK, D.; VANDERLEYDEN, J.; DUTTO, P.; LABANDERA-GONZALEZ, C.; CABALLERO-MELLADO, J.; AGUIRRE, J.F.; KAPULNIK, Y.; BRENER, S.; BURDMAN, S.; KADOURI, D.; SARIG, S.; OKON, Y. Response of agronomically important crops to inoculation with Azospirillum. Australian Journal of Plant Physiology. v.28: p.871-879, 2001. DOBBELAERE, S.; CROONENBORGHS, A.; TRYS, A.; VANDE BROEK, A.; VANDERLEYDEN, J. Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant and Soil, v.212, p.155-164, 1999. DOBBELAERE, S.; OKON, Y. The plant growth-promoting effect and plant responses. In: ELMERICH, C.; NEWTON, W.E. (Eds.). Associative and Endophytic Nitrogen-fixing Bacteria and Cyanobacterial Associations. Springer, p.145-170, 2007. D?BEREINER, J.; BALDANI, V.L.D.; REIS, V.M. Endophytic occurrence of diazotrophic bacteria in non-leguminous crops. In: FENDRIK, I.; DEL GALLO, M.; VANDERLEYDEN, J.; DE ZAMAROCZY, M. eds. Azospirillum VI and related microorganisms. Berlin, Heidelberg: Springer-Verlag, p.15-30. 1995a. D?BEREINER, J. History and new perspective of diazotrophs in association with nonleguminous plants. Symbiosis, v. 13, p. 1-13, 1992. D?BEREINER, J. Influ?ncia da cana-de-a??car na popula??o de Beijerinckia no solo. Revista Brasileira de Biologia, v. 19, p. 251-258, 1959. D?BEREINER, J.; BALDANI, V L.D.; BALDANI, J.I. Como isolar e identificar bact?rias diazotr?ficas em plantas n?o leguminosas. Itaguai-RJ: EMBRAPA - SPI, 1995b. D?BEREINER, J.; RUSCHEL, A.P. Uma nova esp?cie de Beijerinckia. Research Biology, v.1, p. 261-272, 1958. DONG, Z.; CANNY, M.J. A nitrogen-fixing endophyte of sugarcane stems. Plant Physiology, v.105, p.1139-1147, 1994. DOS SANTOS, M.F. Proteoma diferencial da bact?ria Gluconacetobacter diazotrophicus co-cultivada com pl?ntulas de cana-de-a??car. Tese de Doutorado. Universidade Federal do Rio de Janeiro, Instituto de Qu?mica, Rio de Janeiro, 2008. DOS SANTOS, M.F.; P?DUA, V.L.M.; NOGUEIRA, E.M.; HEMERLY, A.S.; DOMONT, G.B. Proteome of Gluconacetobacter diazotrophicus co-cultivated with sugarcane plantlets. Journal of Proteomics. v.73, p. 91 7 - 931, 2010. 120 DUAN, J.; MULLER, K.M.; CHARLES, T.C.; VESELY, S.; GLICK, B.R. 1-Aminocyclopropane-1-carboxylate (ACC) deaminase genes in Rhizobia: Isolation, characterization and regulation. Proceedings of the 7th International PGPR Workshop, Amsterdam, p.50, 2006. DUNN, B. Splitting image. Nature Structural & Molecular Biology. v.4, p.969?972, 1997. DUNN, W.B.; BAILEY, N.J.C.; JOHNSON, H.E. Measuring the metabolome: current analytical technologies. Analyst. v.130, p.606?625, 2005. DUTTA, D.; GACHHUI, R. Nitrogen-fixing and cellulose-producing Gluconacetobacter kombuchae sp. nov., isolated from Kombucha tea. International Journal Of Systematic And Evolutionary Microbiology. v.57, p.353?357, 2007. ELLIS, R.J. Chaperomics: in vivo GroEL function defined. Current Biology. v.15, p.661?3, 2005. ERMOLENKO, D.N.; MAKHATADZE, G.I. Bacterial cold-shock proteins. Cellular and Molecular Life Sciences. v.59, p.1902-1913, 2002. ETESAMI, H.; ALIKHANI, H.A.; AKBARI, A.A. Evaluation of Plant Growth Hormones Production (IAA) Ability by Iranian Soils Rhizobial Strains and Effects of Superior Strains Application on Wheat Growth Indexes. World Applied Sciences Journal, v.6, n.11, p.1576-1584, 2009. FAO - Organiza??o das Na??es Unidas para Agricultura e Alimenta??o. Current World fertilizer trends and Outlook to 2014. FAO, Roma, 2010, 40 p. FAYET, O.; ZIEGELHOFFER, T.; GEORGOPOULOS, C. The GroES and GroEL heat shock gene products of E. coli are essential for bacterial growth at all temperatures. Journal of Bacteriology. v.171, p.1379-1385, 1989. FEKKES, P.; DRIESSEN, A.J.M. Protein targeting to the bacterial cytoplasmic membrane. Microbiology and Molecular Biology Reviews. v.63, p.161?173, 1999. FRANKENBERGER, W.T.Jr.; ARSHAD, M; Phytohormones in soils: Microbial production and function. Marcel Dekker, Inc. New York, 1995. FREIFELDER, D.M. Microbial Genetics. Jones and Bartlett Publishers inc., USA, 1987. FUENTES-RAMIREZ, L.E.; BUSTILLOS-CRISTALES, R. Novel nitrogen-fixing acetic acid bacteria, Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp. nov., associated with coffee plants. International Journal of Systematic and Evolutionary Microbiology. v.51 (Pt 4), p.1305-14, 2001. FUENTES-RAM?REZ, L.E.; JIM?NEZ-SALGADO, T.; ABARCA-OCAMPO, I.R.; CABALLERO-MELLADO, J. Acetobacter diazotrophicus, an indoleacetic acid producing bacterium isolated from sugarcane cultivars of Mexico. Plant and Soil, v.154, p.145-150, 1993. 121 FURTADO, Celso. Forma??o econ?mica do Brasil. 30.ed. S?o Paulo: Companhia Editora Nacional, 2001. 248p GALPERIN, M.Y.; KOLKER, E. New metrics for comparative genomics. Current Opinion in Biotechnology, v.17, n.5, p.440-7, 2006. GAUDIN, V.; VRAIN, D.; JOUANIN, L. Bacterial genes modifying hormonal balance in plant. Plant Physiology and Biology, v.32, p.11-29, 1994. GHOSH, S.; PENTERMAN, J.N.; LITTLE, R.D.; CHAVEZ, R.; GLICK, B.R. Three newly isolated plant growth-promoting bacilli facilitate the growth of canola seedlings. Plant Physiology and Biochemistry, v.41, p.277?281, 2003. GILLIS, M.; KERSTERS, K. Acetobacter diazotrophicus sp. nov., a nitrogen fixing acetic acid bacterium associated with sugarcane. International Journal of Systematic Bacteriology, v.39, n.3, p.361-364, 1989. GLICK B.R., BASHAN Y. Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnology Advances, v.15, p. 353-378, 1997. GLICK, B. R.; KARATUROVI?C, D. M.;NEWELL, P. C. A novel procedure for rapid isolation of plant growth promoting pseudomonads. Canadian Journal of Microbiology, v.41, p.533?536, 1995. GLICK, B. R.; PATTEN, C. L.; HOLGUIN, G.; PENROSE, D.M. Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press. London, 1999. GLICK, B.R.; PENROSE, D.M.; LI, J. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. Journal of Theoretical Biology, v.190, p.63?68, 1998. GLICKMANN, E.; GARDAN, L.; JACQUET, S.; HUSSAIN, S.; ELASRI, M.; PETIT, A.; DESSAUX, Y. Auxin production is a common feature of most pathovars of Pseudomonas syringae. Molecular Plant-Microbe Interactions, v.11, p.156-162, 1998. GOLDSTEIN, A.H. Bacterial mineral phosphate solubilization: historical perspectives and future prospects. American Journal of Alternative Agriculture. v.1, p.57?65, 1986. GOMEZ-ROLDAN, V.; FERMAS, S.; BREWER, P.B.; PUECH-PAG?S, V.; DUN, E. A.; PILLOT, J.P.; LETISSE, F.; MATUSOVA, R.; DANOUN, S.; PORTAIS, J.C.; BOUWMEESTER, H.; B?CARD, G.; BEVERIDGE, C.A.; RAMEAU, C.; ROCHANGE, S.F. Strigolactone inhibition of shoot branching. Nature, v. 455, n.7210, p.180?194, 2008. G?RG, A.; WEISS, W. Current two-dimensional electrophoresis technology for proteomics. Proteomics, v.4, p.3665-3685, 2004. G?RG, A.; WEISS, W., IN: RABILLOUD, T. (Ed.), Proteome Research: Two-Dimensional Gel Electrophoresis and Identification Methods, Springer, Berlin, Heidelberg. p. 57?106, 2000. 122 GOURION, B., M. ROSSIGNOL; J.A. VORHOLT, A proteomic study of Methylobacterium extorquens reveals a response regulator essential for epiphytic growth. Proceedings of the National Academy of Sciences. v.103, p.13186-13191, 2006. GRACIOLLI, L.A.; FREITAS, J.R.D.E.; RUSCHEL, A.P. Bact?rias fixadoras de nitrog?nio nas ra?zes, caules e folhas de cana-de-a??car (Saccharum sp.). Revista de Microbiologia. v.14, p.191-196, 1983. GRAVES, P.R.; HAYSTEAD, T.A. Molecular biologist's guide to proteomics. Microbiology and Molecular Biology Reviews, v.66, n.1, p.39-63, 2002. GREINER, R.; HALLER, E.; KONIEZNY, U.; JANY, K.D. Purification and characterization of a phytase from Klebsiella terrigena. Archives of Biochemistry and Biophysics, v.341, p.201-206, 1997. GRICHKO, V.P.; GLICK, B.R. Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiology and Biochemistry, v.39, p.11?17, 2001. GUTIERREZ-MANERO, F.J.; RAMOS-SOLANO, B.; PROBANZA, A.; MEHOUACHI, J.; TADEO, F.R.; TALON, M. The plant growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiologia Plantarum, v.111, p.206-211, 2001. GYANESHWAR, P.; KUMAR, G. N.; PAREKH, L. J.; POOLE, P. S. Role of soil microorganisms in improving P nutrition of plants. Plant and Soil, v.245, p.83-93, 2002. HARARI, A.; KIGEL, J.; OKON, Y. Involvement of IAA in the interaction between Azospirillum brasilense and Panicum miliaceum roots. Plant and Soil, v.110, p.275-282, 1988. HARDOIM, P.R.; VAN OVERBEEK, L.S.; ELSAS, J.D. Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology, v.16 p. 463?471, 2008. HARTMAN, A.; SINGH, M.; KLINGMULER, W. Isolation and characterization of Azospirillum mutants excreting high amounts of indole acetic acid. Canadian Journal of Microbiology. v.29, p.916?923, 1983. HAYNES, D.; RALPH, P.; PRANGE, J.; DENNISON, B. The impact of the herbicide diuron on photosynthesis in three species of tropical seagrass. Marine Pollution Bulletin, v.41, n.7-12, p. 288-293, 2000. HERRMANN, K.M.; WEAVER, L.M. The shikimate pathway. Annual Review of Plant Physiology and Plant Molecular Biology v.50, p.473?503, 1999. HOAGLAND, D.R; ARNON, D.I. The water culture method for growing plants without soils. Berkeley: California Agricultural Experimental Station, 1950. 347p. 123 HOLMGREN, E.; CRAWFORD, I.P. Regulation of tryptophan genes in Rhizobium leguminosarum. Journal of Bacteriology v.149, p.1135?1137, 1982. HONMA, M.; SHIMOMURA, T. Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agricultural and Biological Chemistry., v.42, p.1825-1831, 1978. HONMA, M. Stereospecific reaction of 1-aminocyclopropane-1-carboxylate deaminase. In J. C. PECH, A. LATCH?, C. BALAGU? (Eds.), Cellular and molecular aspects of the plant hormone ethylene (pp. 111?116). Dordrecht, The Netherlands: Kluwer Academic Publishers, 1993. HONTZEAS, N.; RICHARDSON, A. O.; BELIMOV, A.A.; SAFRONOVA, V.I.; ABU-OMAR, M.M.; GLICK, B.R. Evidence for horizontal gene transfer (HGT) of ACC deaminase genes Applied and Environmental Microbiology, 71 pp. 7556?7558, 2005. HUANG, L.; SHEN, M.; CHERNUSHEVICH, I.; BURLINGAME, A.L.; WANG, C.C.; ROBERTSON, C.D. Identification and isolation of three proteasome subunits and their encoding genes from Trypanosoma brucei. Molecular and Biochemical Parasitology. v.102, p. 211?223, 1999. HUNT, S.M.N.; THOMAS, M.R. Optimal Replication and the importance of experimental design for gel-based quantitative proteomics. Journal of Proteome Research, v.4, n.3, p.809-819, 2005. HUREK, T.; REINHOLD, B.; VANMONTAGU, M.; KELLENBERGER, E. Root colonization and systemic spreading of Azoarcus sp. strain-BH72 in grasses. Journal of Bacteriology, v. 176, n. 7, p. 1913-1923, 1994. H?TTER, R.; NIEDERBERGER, P.; DEMOSS, J.A. Tryptophan biosynthetic genes in eukaryotic microorganisms. Annual Review of Microbiology. v.40, p.55?77, 1986. JACOBSON, C.B.; PASTERNAK, J.J.; GLICK, B.R. Partial purification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Canadian Journal of Microbiology, v.40, p.1019?1025, 1994. JAMES, E.K.; OLIVARES, F.L. Futher observation on the interaction between sugar cane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions. Journal of Experimental Botany, v.52, n.357, p.747-760, 2001. JAMES, P.; QUADRONI, M. Protein identification in DNA databases by peptide mass fingerprinting. Protein Science, v.3, p.1347-1350, 1994. JAMESON, P.E. Cytokinins and auxins in plant-pathogen interactions ? An overview. Plant Growth Regulation. v.32, n.2, p.369-380, 2000. JIA, Y.J.; KAKUTA, Y.; SUGAWARA, M.; IGARASHI, T.; OKI, N.; KISAKI, M.; SHOJI, T.; KANETUNA, Y.; HORITA, T.; MATSUI, H.; HONMA, M. Synthesis and degradation of 1-aminocyclopropane-1-carboxylic acid by Penicillium citrinum. Bioscience, Biotechnology and Biochemistry, v.63, p.542?549, 1999. 124 JIMENEZ-SALGADO, T.; FUENTES-RAMIREZ, L. E. Coffea arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogenfixing acetobacteria. Applied and Environmental Microbiology, v.63, n. 9, p.3676-83, 1997. KAKIMOTO, T. Perception and signal transduction of cytokinins. Annual Review of Plant Biology. v.54, p.605?627, 2003. KASTRITIS, P.L.; BONVIN, A.M. Are scoring functions in protein-protein docking ready to predict interactomes? Clues from a novel binding affinity benchmark. Journal of Proteomic Research. v.9, p.2216?2225, 2010. KATIYAR, V.; GOEL, R. Siderophore-mediated plant growth promotion at low temperature by mutant of fluorescent pseudomonad. Plant Growth Regulation, v.42, p.239-244, 2004. KAZEMI-POUR, N.; CONDEMINE, G.; HUGOUVIEUX-COTTE-PATTAT, N. The secretome of the plant pathogenic bacterium Erwinia chrysanthemi. Proteomics v.4, p.3177-3186, 2004. KAZMI, S.; KRULL, I. S. Proteomics and the current state of protein separations science, Part one. Pharma Genomics, p.14-29, August, 2001. KERNER, K.J.; NAYLOR, D.J.; ISHIHAMA, Y.; MAIER, T.; CHANG, H-C.; STINES, A.P., et al. Proteome-wide analysis of chaperonin dependent protein folding in Escherichia coli. Cell. V.122, p.209?20, 2005. KEROVUO, J.; LAURAEUS, M.; NURMINEN, P.; KALKKINEN, N., APAJALAHTI, J. Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Applied and Environmental Microbiology, v.64, p.2079-2085, 1998. KEVIN, V.J. Plant growth promoting rhizobacteria as biofertilizers; Plant and Soil v.255, p.571?586, 2003. KHALID, A.; ARSHAD, M.; ZAHIR, Z.A. Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. Journal of Applied Microbiology, v.96, p.473-480, 2004. KIM, K.Y.; JORDAN, D.; MCDONALD, G.A. Enterobacter agglomerans, phosphate solubilizing bacteria, and microbial activity in soil: effect of carbon sources. Soil Biology and Biochemistry, v.30, p.995-1003, 1998. KLEE, H.J.; HAYFORD, M.B.; KRETZMER, K.A.; BARRY, G.F.; KISHORE, G.M. Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell, v.3, p.1187?1193, 1991. KLOEPPER, J.W.; SCHROTH, M.N. Plant growth promoting rhizobacteria on radishes. In: Proceedings of the fourth International Conference on Plant Pathogenic Bacteria, INRA, v.2, p.879-892, 1978. 125 KLOEPPER, J.W. A review of mechanisms for plant growth promotion by PGPR, in: Abstracts and short papers. 6th International PGPR workshop, 5-10, 2003. KLOEPPER, J.W.; ZABLOKOVICZ, R.M.; TIPPING, E.M.; LIFSHITZ, R. Plant growth promotion mediated by bacterial rhizosphere colonizers. In: D. L. KEISTER; P. B. CREGAN (Eds.). The rhizosphere and plant growth, p.315-326, 1991. KLOEPPER, J.W.; LIFSHITZ, R.; ZABLOTOWICZ, R.M. Free-living bacterial inocula for enhancing crop productivity. Trends in Biotechnology. v.7, p.39-43, 1989. KLOSE, J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. Humangenetik, v.26, p.231-243, 1975. KOBAYASHI, M.; KAKIZONO, T.; NAGAI, S. Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Applied and Environmental Microbiology v.59, p.867-873, 1993. KOBAYASHI, N.; TANIGUCHI, K.; KOJIMA, K.; URASAWA, S.; UEHARA, N.; OMIZU, Y.; KISHI, Y.; YAGIHASHI, A.; KUROKAWA. I. Analysis of methicillin-resistant and methicillin-susceptible Staphylococcus aureus by molecular typing method based on coagulase gene polymorphisms. Epidemiology and Infection., v. 115, p. 419-426, 1995. KOGA, J.; ADACHI, T.; HIDAKA, H. Molecular cloning of the gene for indolepyruvate decarboxylase from Enterobacter cloacae. Molecular and General Genetics. v.226, p. 10-16, 1991. KORMUT?K, A.; SALAJ, T.; VOOKOV?, B. Storage protein dynamics in zygotic and somatic embryos of white fir. Biologia Bratislava, v. 61, p. 479-485, 2006. KUCEY R.M.N.; JANZE

Page generated in 0.0054 seconds