Return to search

Planejamento e determinação estrutural de modificações cristalinas dos fármacos lamivudina e efavirenz

Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2014-09-30T15:22:16Z
No. of bitstreams: 2
Melo, Ariane Carla Campos de-2013-dissertação.pdf: 4034937 bytes, checksum: 463f8b0f4d2e9a65e273d336d96f0691 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2014-09-30T15:24:53Z (GMT) No. of bitstreams: 2
Melo, Ariane Carla Campos de-2013-dissertação.pdf: 4034937 bytes, checksum: 463f8b0f4d2e9a65e273d336d96f0691 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-09-30T15:24:53Z (GMT). No. of bitstreams: 2
Melo, Ariane Carla Campos de-2013-dissertação.pdf: 4034937 bytes, checksum: 463f8b0f4d2e9a65e273d336d96f0691 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2013-08-02 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / Lamivudine and Efavirenz are anti-HIV drug largely used as, respectively a
non-nucleoside and a nucleoside reverse transcriptase inhibitor as part of
antiretroviral therapies. During the tests to obtain co-crystals of efavirenz with
lamivudine it was obtained a novel crystalline phase, the polymorph of the
hydrochloride salt of lamivudine. The structural and conformational analysis
of this crystal modification showed that this keeps similarities, in
intramolecular and intermolecular level, respectively with lamivudine
hydrochloride and lamivudine hydrochloride monohydrate. Based on the
intermolecular analysis and packing efficiency is expected that the polymorph
of the hydrochloride salt of lamivudine is more soluble than the anhydrous
phase. There are few reports on efavirenz solid state structures and
behaviors. Crystal engineering strategies have not been well-exploited for
this drug. In this sense, we delineate our synthesis strategy from the
structural comparison and possibility of formation of intermolecular
interactions patterns similar to those observed in the cocrystal of efavirenz
and 4,4’-bipyridine. Two 4,4’-bipyridine-like compounds whose heterocycles
are spaced by either an ethylene and an ethane moiety were cocrystallized
together with efavirenz into solid state forms isostructural with respect to that
of the drug cocrystal with 4,4’-bipyridine. The formation of a three-molecule
entity based mainly on the hydrogen bonding donation from two efavirenz
molecules to both pyridyl nitrogens of each coformer unit was kept in the
three efavirenz cocrystals. The introduction of spacer groups in the coformers
has altered the pattern of weak non-classical hydrogen bonds of the type C—
H· · ·O. This intriduction was also related to the formation of a π-π stacking
interaction between pyridyl rings of the ethane-spaced conformer.
Furthermore, a polymorphic form of efavirenz with only one molecule in the
asymmetric unit is reported for the first time here. This polymorph crystallizes
in the monoclinic system and space group C2, strictly similar to form / Lamivudina e Efavirenz são fármacos anti-VIH utilizados respectivamente
como um inibidor não nucleosídeo da transcriptase reversa e inibidor
nucleosídeo da transcriptase reversa como parte de terapias anti-retrovirais.
Durante os ensaios destinados a obtenção dos co-cristais de efavirenz com
lamivudina obteve-se uma fase cristalina inédita, o polimorfo do cloridrato de
lamivudina. As análises conformacionais e estruturais desta modificação
cristalina revelaram que a mesma guarda semelhanças em nível
intramolecular e intermolecular, respectivamente com o cloridrato de
lamivudina e com o cloridrato monohidratado de lamivudina. Baseada na
análise intermolecular e na eficiência do empacotamento espera-se que o
polimorfo do cloridrato de lamivudina seja mais solúvel que a fase anidra.
Existem poucos registros de comportamento e estruturas da fase sólida do
efavirenz. Estratégias de engenharia de cristais não têm sido bem
exploradas com esse fármaco. Nesse sentindo, delineamos nossa estratégia
de síntese a partir da comparação estrutural e possibilidade de formação de
padrões de interações intermoleculares similares àquelas observadas no cocristal
de efavirenz com 4,4’ - bipiridina. Dois compostos semelhantes a 4,4’-
bipiridina, BPE e BPA, cujos heterociclos são respectivamente separados
por um grupo etileno respectivamente e um grupo etano cristalizaram com o
efavirenz em formas sólidas isoestruturais aquela obtida com a 4,4’-
bipiridina. A formação de uma entidade tri-molecular baseada principalmente
em doações de ligações de hidrogênio de duas moléculas de efavirenz para
ambos os nitrogênios piridinícos de cada unidade do co-cristalizante foi
mantida nos três cocristais de efavirenz. A introdução de grupos
espaçadores nos co-cristais alterou o padrão das ligações de hidrogênio do
tipo C—H· · ·O. A introdução destes grupos também está relacionada com a
formação de interações do tipo π-π entre os anéis de piridil do cocristalizante
espaçado com etano. Além disso, uma forma polimórfica do
fármaco efavirenz com apenas uma molécula na unidade assimétrica é
relatada pela primeira vez aqui. Este polimorfo, forma V, cristaliza no sistema
monoclínico e grupo espacial C2, e estritamente similar à forma V.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.bc.ufg.br:tede/3219
Date02 August 2013
CreatorsMelo, Ariane Carla Campos de
ContributorsMartins, Felipe Terra, Martins, Felipe Terra, Ellena, Javier Alcides, Chagas, Rafael Pavão das
PublisherUniversidade Federal de Goiás, Programa de Pós-graduação em Química (IQ), UFG, Brasil, Instituto de Química - IQ (RG)
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFG, instname:Universidade Federal de Goiás, instacron:UFG
Rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/, info:eu-repo/semantics/openAccess
Relation663693921325415158, 600, 600, 600, 600, 7826066743741197278, -3959484153940758247, -2555911436985713659, AAKEROY, C. B.; FASULO, M. E.; DESPER, J. Cocrystal or Salt: Does it Really Matter. Molecular Pharmaceutics, Washington, v.4, n.3, p. 317-322, maio. 2007. AFFONSO, F. O; CRIVELARO, G. M. Direito a vida ou direito a propriedade? - uma reflexão sobre o licenciamento compulsório dos medicamentos para tratamento da AIDS. Memorias Convención Internacional de Salud Pública. Cuba Salud 2012. La Habana 3-7 de Diciembre de 2012. ISBN 978-959-212- 811-8. AGUIAR, M. R. M. P.; GEMAL, A. L.; GIL, R. A. S. Caracterização de polimorfismo em fármacos por ressonância magnética nuclear no estado sólido. Química Nova, São Paulo, v.22, n.4, p. 553-564, Julho/agosto. 1999. ALTOMARE, A.; CASCARANO, G.; GIACOVAZZO, C.; GUAGLIARDI, A. Completion and refinement of crystal-structures with SIR92. Journal of Applied Crystallography, England v. 26, p. 343-350, 1993. ARAUJO, G. L. B.; PITALUGA, A. J.; ANTONIO, S. G.; SANTOS, C. O. P. Polimorfismo na produção de medicamentos. Revista de Ciências Farmacêuticas Básica e Aplicada, São Paulo, v. 33, n.3, p. 27-36, 2012. ARIGA, K.; KUNITAKE, T. Supramolecular Chemistry-Fundamentals and Applications. New York: Springer, 2006. p. 208. ARUNAN, E.; DESIRAJU, G, R.; KLEIN, R, A.; SADLEJ, J.; SCHEINER, S.; ALKORTA, I.; CLARY, D, C.; CRABTREE, R, H.; DANNENBERG, J, J.; HOBZA, P; KJAERGAARD, H, G.; LEGON, A, C.; MENNUCCI, B.; NESBITT, D, J. Definition of the hydrogen Bond. Pure Applied Chemistry, United States of American v. 83, n. 8, p. 1637–1641, Julho. 2011. ATKINS, P; JONES, L. Princípios De Química - Questionando A Vida Moderna e o Meio Ambiente. 5 ª Ed. São Paulo: Bookman, 2011. p. 1048. 90 BANERJEE, R.; BHATT, P. M.; RAVINDRA, N. V.; DESIRAJU, G. R. Saccharin salts of active pharmaceutical ingredients, their crystal structures, and, increased water solubilities. Crystal Growth Design, Washington, v.5, p.2299-2309. Setembro, 2005. BERGERHOFF, G.; BERNDT, M.; BRANDENBURG, K. Evaluation of crystallographic data with the program DIAMOND. Journal of Research of the National Institute of Standards and Technology, Gaithersburg, v. 101, n. 3, p. 221-225, 1996. BERNSTEIN, J. Polymorphism in drug design and delivery. Progress in clinical and biological research, England, v.289, p.203-215, 1989. BERNSTEIN, J.; DAVEY, R. J.; HENCK, J. O. Concomitant polymorphs. Angewandte Chemie-International Edition, United States of America, v.38, n.23, p.3441-3461, 1999. BERNSTEIN, J. Polymorphism in Molecular Crystals. New York: Oxford UK, 2002. p. 429. BLAGDEN, N.; MATAS, M.; GAVAN, P. T.; YORK, P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Advanced Drug Delivery Reviews, Amsterdam, p. 1-14, julho. 2007. BHATT, P. M.; AZIM, Y.; THAKUR, T. S.; DESIJARU, G. R. Co-Crystals of the anti-HIV drugs lamivudine and zidovudine. Crystal Growth Desing, Washigton, v.9, p. 951-957, dezembro. 2009. BRASIL. Boletim Epidemiológico_ AIDS e DST. 2011. Disponível em <HTTP: WWW. Aids. Gov.br/publicação/boletim epidemiológico_2011>. Acesso em: 19 fev. 2013. BOND, A. D. Fundamental Aspecto f Salts and Co-Crystal. In: WOUTERS, J.; QUERE, L. (Org). Pharmaceutical Salts and Co-Crystal. Cambridge: RSC Publising, 2012. p. 9-28. BORCHARDT-OTT, W. Crystallography. 2 ª.ed. Germany: Springer 2011, p.307. BRITTAIN, H.G. Polymorphism in Pharmaceutical Solids. New York: Marcel, Dekker, 2000. BRITTAIN, H. G. Polymorphism and Solvatomorphism. Journal of Pharmaceutical Science. England, v.4, p.705-728, abril. 2005. 91 BROWN, T. L.; LEMAY, H. E.; BRUCE, E. B.; BURDGE, J. R. Química La ciência central. 9 ª.ed. México: Pearson Education, 2004, p.1152. BRUNO, I, J.; COLE, J. C.; EDGINGTON, P, R.; KESSLER, M.; MACRAE, C, F.; MCCABE, P.; PEARSON, J.; TAYLOR, R. New Software searching the Cambridge Structural Data Base and Visualizing Crystal Structure. Acta Crystallographica Section, B-structural Science, England, v. 58, p.389-397, junho. 2002. BUNN, C. Cristais. Seu papel na natureza e na ciência. 3 ª Ed. São Paulo: Companhia Editora Nacional, 1972, p. 293. BURGI, H. B.; HULLIGER, J.; LANGLEY, P. J. Crystallization of supramolecular materials. Current Opinion in Solid State and Materials Science, Amsterdam. v.3, p. 425-430, agosto. 1998. BURLA, M. C.; CALIANDRO, R.; CAMALLI, M.; CARROZZINI, B.; CASCARANO, G. L.; DE CARO, L.; GIACOVAZZO, C.; POLIDORI, G.; SPAGNA, R. SIR2004: an improved tool for crystal structure determination and refinement. Journal of Applied Crystallography, Washington, v. 38, p. 381-388, abril. 2005. CALLISTER, W. D. Fundamentos da ciência e engenharia de materiais: uma abordagem integrada. 5 ª ed, São Paulo: LTC editora, 2006, p.702. COATES, J. A.; CAMMACK, N.; JENKINSON, H. J.; MUTTON, I. M.; PEARSON, B. A.; STOTER, R; CAMERON, J. M; PENN, C. R. The separated enantiomers of 2'-deoxy-3'-thiacytidine (BCH 189) both inhibit human immunodeficiency virus replication in vitro. Antimicrob Agents Chemother, Unite State of America, v. 36, n.1, p.202-205, janeiro 1992. COLLECT, Data Collection Software. The Netherlands: NONIUS BV; Delft, 1998. CRAGG, P. J. Supramolecular Chemistry: From Biological Inspiration to Biomedical Applications. 1ª.ed, New York: Springer, 2010, p. 260. CUFFINI, S.; HOWIE, R. A.; TIEKINK, E. R. T.; WARDELL, J. L.; WARDELL, S. M. S. V. (S)-6-Chloro-4-cyclopropylethynyl-4-trifluoromethyl-1H-3,1- benzoxazin-2(4H)-one. Acta Crystallogr. Sect. E, England v.65, nov. 2009. CUI, Y. A material science perspective of pharmaceutical solids. International Journal of Pharmaceutical, Amsterdam v.339, p.3-18, julho. 2007. CUNICO, W.; GOMES, C. R. B.; JUNIOR, W. T. V. HIV – recentes avanços na pesquisa de fármacos. Química Nova, São Paulo, v.31, n.8, p. 2111- 2117, 2008. 92 DE CLERCQ, E. Toward Improved Anti-HIV Chemotherapy: Therapeutic strategies for intervention with HIV infections. Journal Medicinal Chemistry. Washington, v.38, p.2491-2517, julho 1995. DE CLERCQ, E. Structures et des inhibiteurs non-nucléosidiques de la transcriptase inverse du VIH (INNTI). Médecine et Maladies Infectieuses, França. v.30, p.421-430, 2000. DELORI, A; FRISIC, R; JONES, W. The role of mechanochemistry and supramolecular design in the development of pharmaceutical materials. CrystEngComm, London, v.14, p.2350-2362, novembro. 2012. DESIRAJU, G. R. Crystal engineering the design of organic solids. Amsterdam: Elsevier, 1989, p. 312. DESIRAJU, G. R. Supramolecular synthons in crystal engineering a new organic synthesis. Angewandte Chemie International Edition in English, Weinheim. v.34, p.2311-2327, dezembro. 1995. DESIRAJU, G. R. Designer Crystals: intermolecular interactions, network structures and supramolecular synthons. Chemical Communications, London, 1997, p. 1475-1482. DESIRAJU, G. R. The Supramolecular Synthon in Crystal Engineering. In: VOGTLE, F; STODDART, J. F; SHIBASAKI, M. (Org). Stimulating Concepts in Chemistry. 1ª.ed. Weinheim: Wiley-VCH, 2000, p. 293-297. DESIRAJU, G. R. Polymorphism the same and not quite the same. Crystal Growth e Design, Washigton, v.8, n.1, p. 3-5, janeiro, 2008. DESIRAJU, G. R.; STEINER. T. The Weak Hydrogen Bond: In Structural Chemistry and Biology. 1ª.ed. New York: Oxford Science Publications, 1999, p. 513. DOBKIN, J. F. Aids Bulletin. Efavirenz Receives FDA Approval. Infection in Medicine. v.15, n.11, p.747-752, 1998. DODZIUK, H. Introduction to Supramolecular Chemistry. 1ª ed. United Sates of America: Kluwer Academic Publishers, 2002, p. 368. EBBING, D.; GAMMON, S. D. General Chemistry. 9ª.ed. United States of America: Enhanced Edition, 2010, p. 1030 ELLENA, J.; PAPARIDIS, N.; MARTINS, F. T. Toward supramolecular architectures of the anti-HIV drug lamivudine: understanding the effect of the inclusion of water in a hydrochloride form. CrystEngComm, London, v.14, p. 2373-2376, janeiro 2012. 93 ENRAF-NONIUS_ Difractometer Kappa, CCD. The Netherlands: NONIUS BV; Delft, 1999. FARRUGIA, L. J. ORTEP-3 for Windows a version of ORTEP-III with a graphical user interface (GUI). Journal of Applied Crystallography, England, v.30, p.565, 1997. FARRUGIA, L. J. WINGX suite for small-molecule single crystal crystallography. Journal of Applied Crystallography, England, v.32, p. 837- 838, agosto, 1999. FERNANDES, W. B.; NAPOLITANO, H. B.; PEREZ, C, N.; MARTINS, F. T.; LARIUCCI, C. Aplicações tecnológicas da metodologia cristalográfica. Revista Processos Químicos, Goiânia, v.4, n.7, p.19-32, janeiro/junho. 2010. FERNANDES, W. B. Caracterização estrutural de duas sulfonamidas e de um análogo de chalcona do tipo retinóide. 2011. 145 f. Dissertação (Mestrado em Ciências Moleculares). Universidade Estadual de Goiás, Anápolis-GO, 2011. GABBOTT, P. Principles and Applications of Thermal Analysis. New Delhi: Library of Congress Cataloging in Publication Data, 2008. GAVEZZOTTI, A. Organic Crystal: enginnering and design. Current Opinion in Solid State and Materials Science, Amsterdam, v. 1, p. 501-505, 1996. GAVEZZOTTI, A. A solid-state chemist’s view of the crystal polymorphism of organic compounds. Journal of Pharmaceutical Sciences, Weinheim. v.96, p. 2232-2241, 2007. GIACOVAZZO, C.; MONACO, H. L.; VITERBO, D.; SCORDARI, F.; GIILI, G.; ZANOTTI, G.; CATTI, M. Fundamentals os Crystallography. 2ª.ed. New York, IUCR-Oxford University Press, 2002. GILLI, G.; GILLI, P. The Nature of Hydrogen Bond. 1ª.ed. New York: IUCROxford University Press, 2009. GIRON, D. Thermal analysis and calorimetric methods in characterisation of polymorphs and solvates. Thermochimica Acta, Amsterdam, v.248, p. 1-59, janeiro. 1995. GIRON, D. Applications of Thermal Analysis and Coupled Techniques in Pharmaceutical Industry. Journal of Thermal Analysis and Calorimetry, São Paulo, v.68, p. 335-357, maio. 2002. GISPERT, J. C. I. Estructura Atómica y Enlace Químico. 2ª ed. Barcelona: Reverté, 2007, p. 397. 94 GLUSKER, J. P.; LEWIS, M.; ROSSL, M. Crystal Structure for Chemist and Biologist. Oxford: VCH, 1994. GOEL, A. States of Matter. New Delhi: Discovery Publishing House, 2006, p.302 GREENE, W. C.; DEBYSER, Z.; IKEDA, Y.; FREED, E. O.; STEPHENS, E.; YONEMOTO, W.; BUCKHEIT, R. W.; ESTE, J. A.; CIHLAR, T. Novel targets for HIV therapy. Antiviral Research, Amsterdam, v.80, p. 251-265, dezembro. 2008. HALEBLIAN, J.; MCCRONE W. Pharmaceutical applications of polymorphism. Journal of Pharmaceutical Sciences, Weinheim, v.58, p.911- 929, setembro 1969. HAMMOND, C. The basics of Crystallography and Diffraction. 3ª.ed. New York: IUCR-Oxford University Press, 2009. HIRSCHFELDER, J. O. Determination of Intermolecular Forces. The Journal of Chemical and Physics. United States of American, v. 43, p. 199-203, 1965. HOLDEN, A.; SINGER, A. Crystals and Crystal Growing. 1ª.ed. United States of America: Wesleyan University Press, 1960, p.320. HUNTER, C. A.; SANDERS, J. K. M. The nature of π-π interactions. Journal of Americal Chemical Society, Cambridge, v.112, n.14, p.5525-5534, 1990. JENSEN, W.; PALENIK, G. J.; SUH, I. The history of molecular structure determination viewed through the nobel prizes. Journal of Chemistry Education, v.80, p.753, julho. 2003. JONES, H. P.; DAVEY, R. J.; COX, B. G. Crystallization of a salt of a weak organic acid and base: solubility relations, supersaturation control and polymorphic behavior. Journal of Physical Chemistry B, Cambridge, v. 109, p. 5273-5278, fevereiro. 2005. KNAPMAN, K. Polymorphic Predictions. American Chemical Society, Modern Drug Discovery, Cambridge, v.3, p. 53-57, 2000. KOTZ, J.; TREICHEL, P.; WEAVER, G. Química Geral e Reações Químicas. São Paulo: Cengage Learning , 2008 Vol. 1, p. 696. LAGO, R. F.; COSTA, N, R. Dilemas da política de distribuição de medicamentos antirretrovirais no Brasil. Ciência e Saúde Coletiva, São Paulo, v.15, n.3, p.3529-3540, novembro, 2010. 95 LEHN, J. M. Supramolecular Chemistry-Scope and Perspectives Molecules, Supermolecules, and Molecular Devices. Angewandte Chemie. International Edition in English, v.27, n.1, p. 89-112, agosto, 1988. LLIBRE, J. M.; CLOTET, B. Once-daily single-tablet regimens: a long and winding road to excellence in antiretroviral treatment. Aids Rev, Barcelona, v.14, n.3,p.168-178, julho, 2012. LIMBERGER, A. L. M. B. Estudo do polimorfismo em diferentes fármacos de interesse para a indústria farmacêutica: cimetidina, mebendazol e paracetamol. 2011. 96 f. Dissertação (Mestrado em Farmacologia) _Universidade Federal de Santa Catarina, Florianópolis-SC, 2011. MAHAN, B. M.; MYERS, R. J. Química - um curso universitário. 4ª.ed. São Paulo: Edgard Blucher, 2003, p.609. MAHAPATRA, S.; THAKUR, T. S.; JOSEPH, S.; VARUGHESE, S.; DESIRAJU, G. R. New Solid State Forms of the Anti-HIV Drug Efavirenz Conformational Flexibility and High Z’ Issues. Crystal Growth & Design, Washington, v.10, n.7, p.3191-3202, maio. 2012. MARKOV, I. V. Crystal Growth For Beginners. Fundamentals of Nucleation, Crystal Growrh and Epitaxy. 2ª.ed. Singapore World Scientific, 2003, p. 546. MARTINS, F. T. Química supramolecular de fármacos antirretrovirais inibidores nucleosídeos de transcriptase reversa: novas formas cristalinas e alteração de propriedades de estado sólido. 2010. 282 f. Tese (Doutorado em Física)_Universidade de São Paulo, São Carlos-SP, 2010. MARTINS, F. T.; PAPARIDIS, N.; DORIGUETTO, A. C.; ELLENA, J. Crystal Engineering of an Anti-HIV Drug Based on the Recognition of Assembling Molecular Frameworks. Crystl Growth & Design, Washington, v.9, p.5283- 5292, novembro, 2009. MASSA, W. Crystal Structure Determination. 2ª.ed. New York: Springer, 2004, p. 210. MCCRONE, W. C. Polymorphism in Physics and chemistry of the organic solid State. New York: Wiley Interscience, v.2, 1965. MOLCANOV, K.; PRODIC, B. K. Face-to-face stacking of quinoid rings of alkali salts of bromanilic acid. Structural Science Online, England, v.68, n.1 p-57-65, fevereiro, 2012. MOULTON, B.; ZAWOROTKO, M. J. From Molecules to Crystal Engineering: Supramolecular Isomerism and Polymorphism in Network Solids. Chemical Reviews, Washington, n.6, v.101, p.1629-1658, junho, 2001. 96 NETZ, P. A.; ORTEGA, G. G. Fundamentos de físico química. Uma abordagem conceitual para ciências farmacêuticas. São Paulo: Artmed, 2006, p. 296. NOLASCO, M. M. Ligações de hidrogênio do tipo C-H----O em estruturas supramoleculares. 2007. 266 f. Dissertação (Mestrado em Química) Universidade de Aveiro, Portugal, 2007. OLIVEIRA, I. S.; JESUS, V. L. B. Introdução a Física do Estado Sólido. 1ª ed. São Paulo: Editora Livraria da Física, 2005, p. 355. OTWINOWSKI, Z.; MINOR, W. Processing of x ray diffraction data collected in oscilation mode. In: CARTER, C, W; JR; SWEET, R, M. (ORG). Methods in enzymology: macromolecular crystallography. New York: Academic Press, v. 276, p.307-326, 1997. PAULEKUHN, G. S.; DRESSMAN, J. B.; SAAL, C. Trends in active pharmaceutical ingredient salt selection based on analysis of the Orange Book Database. Journal of Medicinal Chemistry, Washigton, v. 50, p. 6665- 6672, dezembro. 2007. PEÇANHA, E. P.; ANTUNES, O. A. C.; TANURI, A. Estratégias farmacológicas para a terapia anti-aids. Química Nova, São Paulo, n.6B, v.25, p.1108-1116, novembro/dezembro. 2002. PILLAI, S. O. Solid State Physics. 6ª.ed. New Delhi: New age, international limited publishers, 2005, p. 805. PIMPINELLI, A.; VILLAIN, J. Physics of Crystal Growth. 1ª.ed. Cambridge:University Press, 1998, p. 377. RATTI, E.; TRIST, D. The continuing evolution of the drug discovery process in the pharmaceutical industry. IL Farmaco, São Paulo, v. 56, p-13-19, janeiro/fevereiro. 2001. RAVIKUMAR, K.; SRIDHAR, B. Molecular and crystal structure of efavirenz, a potent and specific inhibitor of HIV-1 reverse transcriptase, and its monohydrate. Molecular Crystals and Liquid Crystals, Cambrigde, v.515, p.190-198, março. 2009. RODRIGUESZ-SPONG, B.; PRICE, C. P.; JAYASANKAR, A.; RODRIGUEZHORNEDO, N. General principles of pharmaceutical solid polymorphism: a supra molecular perspective. Advanced Drug Delivery Reviews, Amesterdam, v.56, p 241-274, fevereiro 2004. SACHIN, L.; GRANT, J. W. D. Thermodynamics of Polymorphs. In: Hilfiker R. Polymorphism in the Pharmaceutical Industry. Weinheim: Wiley-VCH, 2006, p.21-42. 97 SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA, 2009. SCHPECTOR, J. Z.; TIEKINK, E. R. T. The Importance of Pi-Interactions in Crystal Engineering: Frontiers in Crystal Engineering. 1ª.ed. New Delhi: Library of Congress Cataloging in Publication Data, 2012, p. 377. SCHWOERER, M.; WOLF, H. C. Organic Molecular Solids. Weinheim: Wiley-VCH ,2007, p. 438. SEDDON, K. R.; ZAWOROTKO, M. Crystal Enginnering. The design and Application of Functional Solid. 1ª.ed. United of States: Kluwer Academic, 1996, p. 512. SERAJUDDIN, A. T. M. Salt formation to improve drug solubility. Advanced Drug Delivery Reviews, Amestard, v. 59, p. 603-616, julho. 2007. SHACKELFORD, J. F. Ciência dos Materiais. 6ª ed. São Paulo: Pearson Education , 2008, p.556. SHELDRICK, G. M. SHELXS-97: program for crystal structure resolution. Göttingen, Germany: University of Göttingen, 1997. SHMIDT, G. M. J. Photodimerization in the Solid State. Pure Applied Chemistry, Cambridge, v.27, n.4, p. 647-678, 1971. SILVA, C. C. P. Caracterização de estado sólido de insumos farmacêuticos ativos: clorpromamida, nevirapina, dietilcarbazina. 2010. 185 f. Dissertação (Mestrado em Física)_Universidade de São Paulo, São Carlos.SP, 2010 SILVA, C. C.; COELHO, R. R.; CIRQUEIRA, M. L.; MELO. A. C. C.; ROSA, I. M. L.; ELLENA, J.; MARTINS, F. T. Salts of the anti-HIV drug lamivudine with phthalic and salicylic acids. CrystEngComm, London. v.14, p.4562-4566, abril, 2012. SINGHAL, D.; CURATOLO, W. Drug polymorphism and dosage from desing: a pratical perspective. Advanced Drug Delivery Reviews, Amsterdam, v.56, p. 335-347, 2003. SKOOG, D. A., HOLLER, F. J., E NIEMAN, T. A. Princípios de Análise Instrumental. Estados Unidos: Editora Bookman, 5ª edição, 2010. SOUZA, M. V. N.; ALMEIDA, M. V. Drogas anti-HIV: passado, presente e perspectivas futuras. Química Nova, São Paulo, v.26, n.3, p.366-372, 2003. SPONG B. R.; PRICEB C. P.; JAYASANKARA, A.; MATZGERB, A. J.; HORNEDOA, N. R. General Principles of Pharmaceutical Solid 98 Polymorphism: a Supramolecular Perspective. Advanced Drug Delivery Reviews, Amsterdam, v.56, p. 241–274, fevereiro, 2004. STAHL P. H.; WERMUTH, C. G. Handbook of pharmaceutical salts: properties, selection, and use. Germany: Wiley-VHC, 2002. p.374. STEED, J. W.; ATWOOD, J. L. Supramolecular Chemistry. 2ªed. Weinheim: Wiley-VCH, 2009, p. 990. STEINER, T; DESIRAJU, G. R; Distinction between the weak hydrogen bond and the van der Waals interaction. Chemical Communications, Cambridge. p.891-892, 1998. SUNIL, S. L.; NAYAK, S. K.; HTHWAR, V. R.; CHOPRA, D.; ROW, T. N. G. Role of Fluorine in Weak Interecations in Co-Crystal. In: WOUTERS, J; QUERE, L. (Org). Pharmaceutical Salts and Co-Crystal. Cambridge: RSC Publising, 2011. p. 29-39. TAVEL, J. A.; MILLER, K. D.; MASUR, H. Guide to major clinical trials of antiretroviral therapy in human immunodeficiency virus-infected patients: protease inhibitors, non-nucleoside reverse transcriptase inhibitors and nucleotide reverse transcriptase inhibitors. Clinical Infectious Disease, New York, v.28, p-643-673, março. 1999. TAKAGI, T.; RAMACHANDRAN, C.; BERMEJO, M.; YAMASHITA, S.; YU, L.X.; AMIDON, G.L. A provisional biopharmaceutical classification of the top 200 oral drugs products in the United States, Great Britain, Spain and Japan. Molecular Pharmaceutics, Washington, v.3, n.6, p.631-643, novembro/dezembro 2006. TICKLE, I.; SHARFF, A.; VINKOVIC, M.; YON, J.; JHOTI, H. High-throughput protein crystallography and drug discovery. Journal Chemistry Society, Cambridge, v.3, n.3, p.558-565, outubro. 2004. VIPPAGUNTA, S. R.; BRITTAIN, H. G.; GRANT, D. J. W. Crystalline solids. Advanced Drug Delivery Reviews, Amsterdam, v.48, p. 3–26, 2001. VISHWESHWAR, P.; MCMAHON, J, A.; BIS, J. A; ZAWOROTKO, M. J. Pharmaceutical Co-Crystals. Journal of Pharmaceutical Sciences, v.95, p.499-516, janeiro. 2005 WALES, D. Intermolecular Forces and Clusters I. New York: Springer, 2005, v. 115, p. 206. WYETH, C. J.; SCHMID, J.; BICKSLER, J. J. New hydrochloride salt of quinoline and its crystalline monohydrochloride salt useful for treating e.g. dementia, Alzheimer’s disease, schizophrenia and depression. WO2007146115-A2, 21 Dec. 2007. 99 YU, C. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Drug Delivery Reviews, Amsterdam, v.48, n.1, p.27-42, maio. 2001

Page generated in 0.0059 seconds