Return to search

Étude du rôle de l’ARN Tuna dans le contexte de pluripotence des cellules souches

Le développement embryonnaire est un processus complexe finement régulé spatio-temporellement par de nombreux acteurs, qu’ils soient ADN, ARN ou protéines. De récents résultats suggèrent un rôle clef dans le développement et les maladies pour une sous-catégorie des ARNs impliqués dans ces mécanismes, les longs ARNs non-codants (lncRNAs). Caractérisés par leur incapacité à produire des protéines, ils sont difficiles à étudier par leur manque de conservation en séquence et leur expression tissu-spécifique. Ici, nous étudions un lncRNA conservé, Tuna (Tcl1 Upstream Neuron-Associated lncRNA), nécessaire au maintien de l’état pluripotent des cellules souches et essentiel à leur différenciation en neurones. Toutefois, les mécanismes dans lesquels cet ARN est impliqué restent inconnus. Pour y répondre, nous avons analysé des données de séquençage d’ARN de différenciation neuronale d’ESCs murines. Nous avons identifié deux nouvelles isoformes spécifiquement exprimées dans les ESCs, sht.Tuna et alt.Tuna. Cette dernière est le résultat de l’épissage alternatif de l’exon 1 de Tuna. Cet épissage alternatif est également observé chez l’humain, démontrant une conservation du traitement de l’ARN entre la souris et l’Homme. Ces deux isoformes sont plus courtes d’environ 1,5kb à l’extrémité 3’ que le transcrit prédit de Tuna (full.Tuna). En effet, l’isoforme full. Tuna n’a pas pu être détectée dans les ESCs, et la surexpression de sht.Tuna a permis d’améliorer la reprogrammation vers l’état pluripotent. Ceci suggère que le rôle de Tuna est mécanistiquement différent dans les ESCs et les neurones. D’autre part, Tuna présente une région hautement conservée (~200bp) contenant un potentiel cadre de lecture pour un peptide de 48 acides aminés, détectable par surexpression de constructions tagguées FLAG. La mutation du codon AUG de cette séquence codante a abrogé l’effet de l’ARN sur la reprogrammation. Ceci implique un rôle du peptide dans l’acquisition de la pluripotence. Par ailleurs, Tuna a été détecté dans les fractions poly-ribosomales et cytoplasmiques d’ARN, supportant son éventuel potentiel codant. Ensemble, ces résultats démontrent que l’épissage alternatif et le potentiel codant d’un locus propre à un lncRNA est complexe et que cet ARN pourrait avoir de multiples fonctions dépendantes de l’état cellulaire / Embryonic development is a complex process finely regulated in time and place by numerous actors such as DNA, RNA, and proteins. Emerging evidence suggests a key role in development and disease for a subcategory of RNAs implicated in those mechanisms, the long non-coding RNAs (lncRNAs). Characterized by their incapacity to produce proteins, they have proven to be challenging to study due to the lack of sequence conservation and their tissue-specific expression. Here, we focus on a conserved lncRNA, Tuna (Tcl1 Upstream Neuron-Associated lncRNA), that is required for maintaining embryonic stem cells (ESCs) in an undifferentiated state but is also essential for their differentiation towards a neuronal cell fate. However, the mechanism behind this dual role remains largely unknown. To address this, we analyzed available RNA-seq data on mouse ESC differentiation towards neurons. We identified two novel isoforms specifically expressed in ESCs, sht.Tuna and alt.Tuna. The latter isoform was the result of alternative splicing of the exon 1 of Tuna. This alternative splicing was also observed in human ESCs demonstrating a conserved processing of the RNA between mouse and human cells. Both new isoforms were ~1.5kb shorter at the 3'-end than the predicted full transcript of Tuna (full.Tuna). In fact, we failed to detect the full.Tuna isoform in ESCs, and overexpression of sht.Tuna isoform enhanced reprogramming to a pluripotent stem cell state. This suggests that the role of Tuna is mechanistically different in ESCs than in neurons. Besides, Tuna also contains a highly conserved region (~200bp) harboring a predicted 48-amino-acids coding sequence that is detectable upon overexpression if FLAG-tagged. Mutating the start codon of this peptide's coding sequence abrogated the enhanced reprogramming effect. This infers a role for the peptide in the acquisition of a pluripotent state. Moreover, Tuna was detected in poly-ribosomal and cytoplasmic RNA fractions further supporting a peptide coding potential. Taken together, our results demonstrate that alternative splicing and coding potential of a particular lncRNA locus is complex and that a lncRNA may have multiple functionality depending on cell state.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/66709
Date25 January 2021
CreatorsHéricher, Gaultier
ContributorsHussein, Samer
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typemémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise
Format1 ressource en ligne (xi, 71 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0061 seconds