Return to search

Mobile Antenna Systems for 4G and 5G Applications with User Body Interaction

In the thesis, the user body effect on antennas in a mobile terminal is discussed. In order to overcome the degradation of Multiple-Input Multiple-Output (MIMO) performance due to the user body effect, a quad-elements MIMO antenna array which can mitigate the body effect through an adaptive antenna switching method is introduced for 4G mobile terminals. In addition, various bezel MIMO antennas that are robust to the impedance mismatching caused by the user effect have also been presented. The study of user body effect is later extended to frequency bands at 15 GHz and 28 GHz for future 5G communication systems. The results reveal that a human body will cause a significant shadowing loss, which will be a critical loss in 5G cellular networks. The electromagnetic field (EMF) exposure of a mobile terminal is also studied in this thesis. Below 6 GHz, the simultaneous transmission specific absorption rate (SAR) for MIMO antennas is the primary concern due to its complicated assessment procedures. Above 6 GHz, the free space power density is adopted as the basic parameter of exposure limits globally, and preliminary studies have been presented to address major challenges in EMF exposure assessment for 5G mobile terminals. / <p>QC 20171005</p>

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-215266
Date January 2017
CreatorsZhao, Kun
PublisherKTH, Elektroteknisk teori och konstruktion, Stockholm
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EE, 1653-5146 ; 2017:137

Page generated in 0.0017 seconds