Return to search

Influence des ions lithium et borate sur l'hydratation de ciments sulfo-alumineux : application au conditionnement de résines échangeuses d'ions boratées / Influence of lithium and boron ions on calcium sulfoaluminate cement hydration : application for the conditioning of boron ion exchange resins

Dans les réacteurs nucléaires à eau pressurisée, une solution d'acide borique de pH contrôlé par ajout de lithine est injectée dans le circuit primaire. Le bore joue le rôle de neutrophage et participe au contrôle des réactions de fission. La solution du circuit primaire est épurée par passage sur colonnes de résines échangeuses d'ions. Ces résines sont périodiquement renouvelées et constituent un déchet de faible activité. Outre des radionucléides, elles contiennent majoritairement des ions borate et lithium. Elles sont actuellement conditionnées dans une matrice organique avant stockage en site de surface. Une évolution du procédé est envisagée, avec remplacement de la matrice organique par une matrice minérale. Cette thèse évalue les potentialités des ciments sulfo-alumineux pour le conditionnement de résines boratées en présence de lithium. Ces liants présentent en effet l'avantage de former des hydrates capables d'insérer les ions borate dans leur structure, et leur hydratation est moins retardée que celle des ciments silico-calciques conventionnels. Une démarche analytique, procédant par complexification progressive des systèmes étudiés, est mise en œuvre. Ainsi, l'hydratation de ciments sulfo-alumineux à forte teneur en ye'elimite est-elle successivement étudiée en présence (i) de sels de lithium, (ii) d'hydroxyde de lithium et de borate de sodium, et (iii) d'hydroxyde de lithium et de résines boratées. L'approche expérimentale est complétée par des simulations thermodynamiques s'appuyant sur une base de données développée pour les besoins de l'étude. Il apparaît que les ions lithium accélèrent l'hydratation du ciment sulfo-alumineux en diminuant la durée de la période d'inertie thermique. Le mécanisme mis en jeu implique la précipitation d'un hydroxyde mixte d'aluminium et de lithium. Au contraire, le borate de sodium ralentit l'hydratation du ciment sulfo-alumineux en augmentant la durée de la période d'inertie thermique. Une espèce riche en bore et sodium, l'ulexite, précipite transitoirement dès le début de l'hydratation. En sa présence, la dissolution de la ye'elimite reste lente. Lors de l'ajout simultané d'hydroxyde de lithium et de borate de sodium dans la solution de gâchage, les mécanismes observés pour chacune des espèces considérées séparément se superposent. Un troisième processus vient s'ajouter dans le cas d'un ciment non gypsé : le lithium favorise la formation initiale d'une phase AFm boratée qui disparaît au profit d'une phase AFt boratée lorsque l'hydratation s'accélère. Les résultats obtenus permettent in fine de proposer une première formulation d'enrobage de résines boratées dont les propriétés sont compatibles avec les exigences requises pour une matrice de conditionnement sur la durée de l'étude. / In pressurized water reactors, a solution of boric acid, the pH of which is controlled by the addition of lithium hydroxide, is injected in the primary circuit. Boron acts as a neutron moderator and helps controlling the fission reactions. The primary coolant is purified by flowing through columns of ion exchange resins. These resins are periodically renewed and constitute a low-level radioactive waste. In addition to radionuclides, they mainly contain borate and lithium ions. They are currently encapsulated in an organic matrix before being stored in a near-surface repository. An evolution of the process is considered, involving the replacement of the organic matrix by a mineral one.In this PhD study, the potential of calcium sulfoaluminate cements (CSAC) to solidify / stabilize borated resins in the presence of lithium is investigated. These binders have the advantage to form hydrates which can incorporate borate ions in their structure, and their hydration is less retarded than that of Portland cement.An analytical approach is adopted, based on a progressive increase in the complexity of the investigated systems. Hydration of ye'elimite-rich CSAC is thus successively investigated in the presence of (i) lithium salts, (ii) lithium hydroxide and sodium borate, and (iii) lithium hydroxide and borated ion exchange resins. The experimental investigation is supplemented by thermodynamic modelling using a database specially developed for the needs of the study.Lithium ions are shown to accelerate CSAC hydration by decreasing the duration of the period of low thermal activity. The postulated mechanism involves the precipitation of lithium-containing aluminum hydroxide. On the contrary, sodium borate retards CSAC hydration by increasing the duration of the period of low thermal activity. Ulexite, a poorly crystallized mineral containing sodium and borates, transiently precipitates at early age. As long as ulexite is present, dissolution of ye'elimite is strongly slowed down. When sodium borate and lithium hydroxide are simultaneously introduced in the mixing solution, these two mechanisms are superimposed. With a gypsum-free cement, a third process is additionally observed: lithium promotes the initial precipitation of a borated AFm phase which is later converted into a borated AFt phase when hydration accelerates.Finally, based on the achieved results, a cement-based formulation is designed for the encapsulation of borated resins. Its properties fulfill the requirements for a conditioning matrix over the duration of the study.

Identiferoai:union.ndltd.org:theses.fr/2015MONTS014
Date10 November 2015
CreatorsDhoury, Mélanie
ContributorsMontpellier, Cau Dit Coumes, Céline, Damidot, Denis
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0013 seconds